Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe3O4 Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field
<p>Schematic representation for the synthesis of iron oxide magnetic nanoparticles (Fe<sub>3</sub>O<sub>4</sub>-MNPs) using Ko-precipitation Hydrolytic Basic (KHB) methodology.</p> "> Figure 2
<p>(<b>a</b>) TEM image; (<b>b</b>) corresponding particle size distribution; and (<b>c</b>) hydrodynamic size (D<sub>H</sub>) distribution of Fe<sub>3</sub>O<sub>4</sub>-MNP dispersed in water. TEM and HR-TEM images clearly show the highly crystalline nature of the as-synthesized MNPs and their well-defined interfringe spacings.</p> "> Figure 3
<p>(<b>a</b>) XRD patterns; (<b>b</b>) Rietveld analysis; (<b>c</b>) Williamson–Hall method; and (<b>d</b>) EDX spectrum of the synthesized Fe<sub>3</sub>O<sub>4</sub> MNPs.</p> "> Figure 4
<p>(<b>a</b>) Hysteresis loop at room temperature; (<b>b</b>) fitting of the experimental magnetization with the Langevin function; and (<b>c</b>) the saturation law.</p> "> Figure 5
<p>(<b>a</b>) Temperature rise for different concentrations and (<b>b</b>) SAR values as function of concentration.</p> "> Figure 6
<p>(<b>a</b>) Temperature increases at different frequencies and field amplitudes for a concentration of 5 mg/mL (<b>a</b>–<b>c</b>) and (<b>d</b>–<b>f</b>) SAR values.</p> "> Figure 7
<p>(<b>a</b>) Temperature rise at different frequency and field amplitude of 120 Oe for concentration of 5 mg/mL and (<b>b</b>) SAR values.</p> "> Figure 8
<p>LRT model fitting the experimental SARs (<b>a</b>) with the square of field amplitude and (<b>b</b>) with the frequency at field <span class="html-italic">H</span><sub>0</sub> = 120 Oe using Equation (12).</p> "> Figure 9
<p>MTT cell viability assay for MDA-MB-231 metastatic breast cancer cells incubated with different concentrations of Fe<sub>3</sub>O<sub>4</sub> MNPs or the free anticancer drug doxorubicin. The results clearly show the low toxicity of MNPs, while the free drug is shown to be considerably toxic, killing almost all the cells.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Bare-Fe3O4 MNPs by KHB Method [10]
2.3. Characterization
2.4. Self-Heating
2.5. Cell Viability Assay
3. Results and Discussion
3.1. Preparation and Characterization of Fe3O4 MNPs
3.2. Magnetic Hyperthermia Measurements
3.2.1. Effect of MNP Concentrations
3.2.2. Effect of Applied Magnetic Field Amplitude and Frequency
3.2.3. Mechanism of Heating and the LRT Model
3.3. Cytotoxicity and Biocompatibility of MNPs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, C.S.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 789–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, K.F.; Dupuy, D.E. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat. Rev. Cancer 2014, 14, 199–208. [Google Scholar] [CrossRef]
- Ganguly, S.; Margel, S. 3D printed magnetic polymer composite hydrogels for hyperthermia and magnetic field driven structural manipulation. Prog. Polym. Sci. 2022, 131, 101574. [Google Scholar] [CrossRef]
- De la Presa, P.; Luengo, Y.; Multigner, M.; Costo, R.; Morales, M.; Rivero, G.; Hernando, A. Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J. Phys. Chem. C 2012, 116, 25602–25610. [Google Scholar] [CrossRef]
- Lemine, O.; Omri, K.; Iglesias, M.; Velasco, V.; Crespo, P.; De La Presa, P.; El Mir, L.; Bouzid, H.; Yousif, A.; Al-Hajry, A. γ-Fe2O3 by sol–gel with large nanoparticles size for magnetic hyperthermia application. J. Alloys Compd. 2014, 607, 125–131. [Google Scholar] [CrossRef]
- Martinez-Boubeta, C.; Simeonidis, K.; Makridis, A.; Angelakeris, M.; Iglesias, O.; Guardia, P.; Cabot, A.; Yedra, L.; Estradé, S.; Peiró, F. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 2013, 3, 1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, A.; Wust, P.; Fähling, H.; John, W.; Hinz, A.; Felix, R. Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia. Int. J. Hyperth. 2009, 25, 499–511. [Google Scholar] [CrossRef]
- Abbasi, A.Z.; Gutiérrez, L.; del Mercato, L.L.; Herranz, F.; Chubykalo-Fesenko, O.; Veintemillas-Verdaguer, S.; Parak, W.J.; Morales, M.P.; González, J.M.; Hernando, A. Magnetic capsules for NMR imaging: Effect of magnetic nanoparticles spatial distribution and aggregation. J. Phys. Chem. C 2011, 115, 6257–6264. [Google Scholar] [CrossRef] [Green Version]
- Johannsen, M.; Thiesen, B.; Wust, P.; Jordan, A. Magnetic nanoparticle hyperthermia for prostate cancer. Int. J. Hyperth. 2010, 26, 790–795. [Google Scholar] [CrossRef] [PubMed]
- El-Boubbou, K.; Lemine, O.M.; Ali, R.; Huwaizi, S.M.; Al-Humaid, S.; AlKushi, A. Evaluating magnetic and thermal effects of various Polymerylated magnetic iron oxide nanoparticles for combined chemo-hyperthermia. New J. Chem. 2022, 46, 5489–5504. [Google Scholar] [CrossRef]
- Lemine, O.; Madkhali, N.; Alshammari, M.; Algessair, S.; Gismelseed, A.; Mir, L.E.; Hjiri, M.; Yousif, A.A.; El-Boubbou, K. Maghemite (γ-Fe2O3) and γ-Fe2O3-TiO2 nanoparticles for magnetic hyperthermia applications: Synthesis, characterization and heating efficiency. Materials 2021, 14, 5691. [Google Scholar] [CrossRef]
- Ghosh, R.; Pradhan, L.; Devi, Y.P.; Meena, S.; Tewari, R.; Kumar, A.; Sharma, S.; Gajbhiye, N.; Vatsa, R.; Pandey, B.N. Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J. Mater. Chem. 2011, 21, 13388–13398. [Google Scholar] [CrossRef]
- Singh, A.K.; Srivastava, O.; Singh, K. Shape and size-dependent magnetic properties of Fe3O4 nanoparticles synthesized using piperidine. Nanoscale Res. Lett. 2017, 12, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virumbrales-del Olmo, M.; Delgado-Cabello, A.; Andrada-Chacón, A.; Sánchez-Benítez, J.; Urones-Garrote, E.; Blanco-Gutiérrez, V.; Torralvo, M.; Sáez-Puche, R. Effect of composition and coating on the interparticle interactions and magnetic hardness of MFe2O4 (M= Fe, Co, Zn) nanoparticles. Phys. Chem. Chem. Phys. 2017, 19, 8363–8372. [Google Scholar] [CrossRef] [PubMed]
- Madkhali, N.; Algessair, S.; Lemine, O.; Alanzi, A.Z.; Ihzaz, N.; EL Mir, L. Heating Ability of γ-Fe2O3@ZnO/Al Nanocomposite for Magnetic Hyperthermia Applications. Sci. Adv. Mater. 2022, 14, 1394–1400. [Google Scholar] [CrossRef]
- Brown, W.F. Theory of the Approach to Magnetic Saturation. Phys. Rev. 1940, 58, 736–743. [Google Scholar] [CrossRef]
- Polishchuk, D.; Nedelko, N.; Solopan, S.; Ślawska-Waniewska, A.; Zamorskyi, V.; Tovstolytkin, A.; Belous, A. Profound interfacial effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 core/shell nanoparticles. Nanoscale Res. Lett. 2018, 13, 67. [Google Scholar] [CrossRef] [Green Version]
- Obaidat, I.M.; Issa, B.; Haik, Y. Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 2015, 5, 63–89. [Google Scholar] [CrossRef] [Green Version]
- Patade, S.R.; Andhare, D.D.; Somvanshi, S.B.; Jadhav, S.A.; Khedkar, M.V.; Jadhav, K. Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram. Int. 2020, 46, 25576–25583. [Google Scholar] [CrossRef]
- Hu, Z.; He, X.; Restuccia, F.; Rein, G. Anisotropic and homogeneous model of heat transfer for self-heating ignition of large ensembles of lithium-ion batteries during storage. Appl. Therm. Eng. 2021, 197, 117301. [Google Scholar] [CrossRef]
- Hemalatha, K.; Alamelumangai, K.; Arulmozhi, R.; Chandunika, R.; Sahu, N.K.; Parthipan, G.; Rajaram, M. Cytotoxic effect of functionalized superparamagnetic samarium doped iron oxide nanoparticles for hyperthermia application. Ceram. Int. 2022, 48, 24485–24495. [Google Scholar] [CrossRef]
- Behdadfar, B.; Kermanpur, A.; Sadeghi-Aliabadi, H.; del Puerto Morales, M.; Mozaffari, M. Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route. J. Solid State Chem. 2012, 187, 20–26. [Google Scholar] [CrossRef]
- Kallumadil, M.; Tada, M.; Nakagawa, T.; Abe, M.; Southern, P.; Pankhurst, Q.A. Suitability of commercial colloids for magnetic hyperthermia. J. Magn. Magn. Mater. 2009, 321, 1509–1513. [Google Scholar] [CrossRef]
- Torres, T.E.; Lima, E.; Calatayud, M.P.; Sanz, B.; Ibarra, A.; Fernández-Pacheco, R.; Mayoral, A.; Marquina, C.; Ibarra, M.R.; Goya, G.F. The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia. Sci. Rep. 2019, 9, 3992. [Google Scholar] [CrossRef] [Green Version]
- Carrey, J.; Mehdaoui, B.; Respaud, M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J. Appl. Phys. 2011, 109, 083921. [Google Scholar] [CrossRef]
- Chung, S.; Hoffmann, A.; Bader, S.; Liu, C.; Kay, B.; Makowski, L.; Chen, L. Biological sensors based on Brownian relaxation of magnetic nanoparticles. Appl. Phys. Lett. 2004, 85, 2971–2973. [Google Scholar] [CrossRef]
- Fortin, J.-P.; Wilhelm, C.; Servais, J.; Ménager, C.; Bacri, J.-C.; Gazeau, F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 2007, 129, 2628–2635. [Google Scholar] [CrossRef]
- Wu, K.; Wang, J.-P. Magnetic hyperthermia performance of magnetite nanoparticle assemblies under different driving fields. AIP Adv. 2017, 7, 056327. [Google Scholar] [CrossRef] [Green Version]
Concentration (mg/mL) | Maximum Temperature (°C) | Time Needed to Reach Hyperthermia Temperature 42 °C (min) | SAR (W/g) | ILP |
---|---|---|---|---|
2.5 | 53.16 | 6.12 | 261.21 | 4.29 |
5 | 53.77 | 5.70 | 163.42 | 2.68 |
10 | 80.79 | 2.77 | 84.28 | 1.38 |
Field H0 (Oe) | Maximum Temperature (°C) | Time Needed to Reach Hyperthermia Temperature 42 °C (min) | SAR (W/g) | ILP |
---|---|---|---|---|
100 | 32.28 | Not reached | 30.24 | 1.43 |
120 | 38.71 | Not reached | 70.77 | 2.33 |
140 | 46.43 | 10.05 | 111.31 | 2.69 |
Frquency (kHz) | Maximum temperature (°C) | Time Needed to Reach Hyperthermia Temperature 42 °C (min) | SAR (W/g) | ILP |
---|---|---|---|---|
113 | 29.31 | Not reached | 23.16 | 2.93 |
332 | 38.71 | Not reached | 70.77 | 2.33 |
630 | 53.84 | 6.83 | 110.66 | 1.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemine, O.M.; Algessair, S.; Madkhali, N.; Al-Najar, B.; El-Boubbou, K. Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe3O4 Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field. Nanomaterials 2023, 13, 453. https://doi.org/10.3390/nano13030453
Lemine OM, Algessair S, Madkhali N, Al-Najar B, El-Boubbou K. Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe3O4 Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field. Nanomaterials. 2023; 13(3):453. https://doi.org/10.3390/nano13030453
Chicago/Turabian StyleLemine, O. M., Saja Algessair, Nawal Madkhali, Basma Al-Najar, and Kheireddine El-Boubbou. 2023. "Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe3O4 Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field" Nanomaterials 13, no. 3: 453. https://doi.org/10.3390/nano13030453
APA StyleLemine, O. M., Algessair, S., Madkhali, N., Al-Najar, B., & El-Boubbou, K. (2023). Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe3O4 Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field. Nanomaterials, 13(3), 453. https://doi.org/10.3390/nano13030453