Plasmon-Enhanced Fluorescence of EGFP on Short-Range Ordered Ag Nanohole Arrays
<p>Simplified schematic of the experiment showing the short-range ordered (SRO) nanoholes in the optically thin silver film with immobilized Enhanced Green Fluorescent Protein (EGFP) and the illumination configuration.</p> "> Figure 2
<p>EGFP fluorescence enhancement by the Ag nanohole arrays. (<b>A</b>) Normalized extinction spectra of various Ag nanohole arrays (NHAs) (colored lines) and normalized absorption (blue) and emission (green) of EGFP (filled area). (<b>B</b>) Relative emission intensity of EGFP immobilized on glass (black) and on AgNHAs (colored lines). The legend indicates the SPR peak positions. (<b>C</b>) Fluorescence enhancement factors. The same color code is used in all panels.</p> "> Figure 3
<p>Fluorescence decay kinetics of EGFP immobilized on glass (red dots) and AgNHA (green dots) with the corresponding fits (red and green lines, respectively). Shown is also the instrument response function (blue line).</p> "> Figure 4
<p>Simulation of the EGFP fluorescence enhancement near periodic 100 nm AgNHA. (<b>A</b>) Top and section views of the simulated periodic box; the blue and red dots indicate the positions of a dipole source during the scan (the same color code is used in panels <b>B</b>,<b>C</b>) Extinction (1-T) spectrum of Ag NHA (blue line). The excitation and oscillating dipole emission wavelengths are shown by the blue and green dashed lines, respectively. (<b>C</b>) Excited state lifetime. (<b>D</b>) Fluorescence enhancement factor.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of SRO Nanohole Arrays
2.3. Protein Expression and Purification
2.4. Immobilization of EGFP
2.5. Lifetime Measurements and Spectroscopy
2.6. Simulations
3. Results and Discussion
3.1. Fluorescence Enhancement
3.2. Fluorescence Decay
3.3. Simulation Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer US: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Lal, S.; Grady, N.K.; Kundu, J.; Levin, C.S.; Lassiter, J.B.; Halas, N.J. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 2008, 37, 898. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Huang, Z.; Liu, Z.; Chen, J.; Liu, Y.; Tang, L.; Liu, G. Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates. Sens. Actuators B Chem. 2018, 262, 845–851. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Y.; Tang, L.; Liu, X.; Fu, G.; Liu, Z. Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures. Nanophotonics 2019, 8, 1095–1107. [Google Scholar] [CrossRef]
- Willets, K.A.; Wilson, A.J.; Sundaresan, V.; Joshi, P.B. Super-Resolution Imaging and Plasmonics. Chem. Rev. 2017, 117, 7538–7582. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Sugawara, Y.; Kelf, T.A.; Baumberg, J.J.; Abdelsalam, M.E.; Bartlett, P.N. Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids. Phys. Rev. Lett. 2006, 97, 266808. [Google Scholar] [CrossRef] [Green Version]
- Ahmadivand, A.; Gerislioglu, B.; Ramezani, Z.; Ghoreishi, S.A. Demonstration of Robust Plexcitonic Coupling in Organic Molecules-Mediated Toroidal Meta-Atoms. Adv. Opt. Mater. 2019. [Google Scholar] [CrossRef]
- Fort, E.; Grésillon, S. Surface enhanced fluorescence. J. Phys. D Appl. Phys. 2008, 41, 013001. [Google Scholar] [CrossRef] [Green Version]
- Geddes, C.D. Metal-Enhanced Fluorescence; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer US: Boston, MA, USA, 2006; pp. 1–954. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, Z.; Zheng, H.; Sun, M. Recent Progress on Plasmon-Enhanced Fluorescence. Nanophotonics 2015, 4, 472–490. [Google Scholar] [CrossRef]
- Chudakov, D.M.; Lukyanov, S.; Lukyanov, K.A. Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol. 2005, 23, 605–613. [Google Scholar] [CrossRef]
- Giepmans, B.N.G. The Fluorescent Toolbox for Assessing Protein Location and Function. Science 2006, 312, 217–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Fernandez, M.; Clarke, D. Single Molecule Fluorescence Detection and Tracking in Mammalian Cells: The State-of-the-Art and Future Perspectives. Int. J. Mol. Sci. 2012, 13, 14742–14765. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhang, J.; Lakowicz, J.R. Metal-enhanced fluorescence of single green fluorescent protein (GFP). Biochem. Biophys. Res. Commun. 2008, 376, 712–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donehue, J.E.; Wertz, E.; Talicska, C.N.; Biteen, J.S. Plasmon-Enhanced Brightness and Photostability from Single Fluorescent Proteins Coupled to Gold Nanorods. J. Phys. Chem. C 2014, 118, 15027–15035. [Google Scholar] [CrossRef]
- Flynn, J.D.; Haas, B.L.; Biteen, J.S. Plasmon-Enhanced Fluorescence from Single Proteins in Living Bacteria. J. Phys. Chem. C 2016, 120, 20512–20517. [Google Scholar] [CrossRef]
- Humar, M.; Kwok, S.J.J.; Choi, M.; Yetisen, A.K.; Cho, S.; Yun, S.H. Toward biomaterial-based implantable photonic devices. Nanophotonics 2017, 6, 414–434. [Google Scholar] [CrossRef]
- Cui, X.; Tawa, K.; Kintaka, K.; Nishii, J. Enhanced Fluorescence Microscopic Imaging by Plasmonic Nanostructures: From a 1D Grating to a 2D Nanohole Array. Adv. Funct. Mater. 2010, 20, 945–950. [Google Scholar] [CrossRef]
- Brolo, A.G.; Kwok, S.C.; Moffitt, M.G.; Gordon, R.; Riordon, J.; Kavanagh, K.L. Enhanced fluorescence from arrays of nanoholes in a gold film. J. Am. Chem. Soc. 2005, 127, 14936–14941. [Google Scholar] [CrossRef]
- Wang, M.; Bangalore Rajeeva, B.; Scarabelli, L.; Perillo, E.P.; Dunn, A.K.; Liz-Marzán, L.M.; Zheng, Y. Molecular-Fluorescence Enhancement via Blue-Shifted Plasmon-Induced Resonance Energy Transfer. J. Phys. Chem. C 2016, 120, 14820–14827. [Google Scholar] [CrossRef] [Green Version]
- Hanarp, P.; Sutherland, D.S.; Gold, J.; Kasemo, B. Control of nanoparticle film structure for colloidal lithography. Colloids Surf. A Physicochem. Eng. Asp. 2003, 214, 23–36. [Google Scholar] [CrossRef]
- Prikulis, J.; Hanarp, P.; Olofsson, L.; Sutherland, D.; Käll, M. Optical Spectroscopy of Nanometric Holes in Thin Gold Films. Nano Lett. 2004, 4, 1003–1007. [Google Scholar] [CrossRef]
- Jonsson, M.P.; Dahlin, A.B.; Jönsson, P.; Höök, F. Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films (Review). Biointerphases 2009, 3, FD30–FD40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sannomiya, T.; Scholder, O.; Jefimovs, K.; Hafner, C.; Dahlin, A.B. Investigation of Plasmon Resonances in Metal Films with Nanohole Arrays for Biosensing Applications. Small 2011, 7, 1653–1663. [Google Scholar] [CrossRef]
- Bochenkov, V.E.; Frederiksen, M.; Sutherland, D.S. Enhanced refractive index sensitivity of elevated short-range ordered nanohole arrays in optically thin plasmonic Au films. Opt. Express 2013, 21, 14763–14770. [Google Scholar] [CrossRef] [PubMed]
- Xiong, K.; Emilsson, G.; Dahlin, A.B. Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters. Analyst 2016, 141, 3803–3810. [Google Scholar] [CrossRef] [PubMed]
- Xiong, K.; Tordera, D.; Emilsson, G.; Olsson, O.; Linderhed, U.; Jonsson, M.P.; Dahlin, A.B. Switchable Plasmonic Metasurfaces with High Chromaticity Containing Only Abundant Metals. Nano Lett. 2017, 17, 7033–7039. [Google Scholar] [CrossRef] [Green Version]
- Tordera, D.; Zhao, D.; Volkov, A.V.; Crispin, X.; Jonsson, M.P. Thermoplasmonic Semitransparent Nanohole Electrodes. Nano Lett. 2017, 17, 48. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.M.; Bochenkov, V.E.; Espinoza, J.D.A.; Smits, E.C.P.; Muzafarov, A.M.; Kononevich, Y.N.; Sutherland, D.S. Plasmonic Fluorescence Enhancement of DBMBF2 Monomers and DBMBF2-Toluene Exciplexes using Al-Hole Arrays. J. Phys. Chem. C 2014, 118, 2138–2145. [Google Scholar] [CrossRef]
- Hagemann, H.J.; Gudat, W.; Kunz, C. Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3. J. Opt. Soc. Am. 1975, 65, 742. [Google Scholar] [CrossRef]
- Bharadwaj, P.; Novotny, L. Spectral dependence of single molecule fluorescence enhancement. Opt. Express 2007, 15, 14266. [Google Scholar] [CrossRef] [Green Version]
- Lakowicz, J.R.; Ray, K.; Chowdhury, M.; Szmacinski, H.; Fu, Y.; Zhang, J.; Nowaczyk, K. Plasmon-controlled fluorescence: A new paradigm in fluorescence spectroscopy. Analyst 2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, G.; Day, R.N.; Piston, D. Fluorescent protein spectra. J. Cell Sci. 2001, 114, 837–838. [Google Scholar] [PubMed]
- Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: Cambridge, UK, 2006; Volume 9780521832, pp. 1–539. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bochenkov, V.E.; Lobanova, E.M.; Shakhov, A.M.; Astafiev, A.A.; Bogdanov, A.M.; Timoshenko, V.A.; Bochenkova, A.V. Plasmon-Enhanced Fluorescence of EGFP on Short-Range Ordered Ag Nanohole Arrays. Nanomaterials 2020, 10, 2563. https://doi.org/10.3390/nano10122563
Bochenkov VE, Lobanova EM, Shakhov AM, Astafiev AA, Bogdanov AM, Timoshenko VA, Bochenkova AV. Plasmon-Enhanced Fluorescence of EGFP on Short-Range Ordered Ag Nanohole Arrays. Nanomaterials. 2020; 10(12):2563. https://doi.org/10.3390/nano10122563
Chicago/Turabian StyleBochenkov, Vladimir E., Ekaterina M. Lobanova, Aleksander M. Shakhov, Artyom A. Astafiev, Alexey M. Bogdanov, Vadim A. Timoshenko, and Anastasia V. Bochenkova. 2020. "Plasmon-Enhanced Fluorescence of EGFP on Short-Range Ordered Ag Nanohole Arrays" Nanomaterials 10, no. 12: 2563. https://doi.org/10.3390/nano10122563
APA StyleBochenkov, V. E., Lobanova, E. M., Shakhov, A. M., Astafiev, A. A., Bogdanov, A. M., Timoshenko, V. A., & Bochenkova, A. V. (2020). Plasmon-Enhanced Fluorescence of EGFP on Short-Range Ordered Ag Nanohole Arrays. Nanomaterials, 10(12), 2563. https://doi.org/10.3390/nano10122563