How Is Privacy Behavior Formulated? A Review of Current Research and Synthesis of Information Privacy Behavioral Factors
Abstract
:1. Introduction
- A list of all identified in the literature determinant factors of ICT users’ privacy behavior
- A framework that synthesizes and classifies the identified factors
- A fertile environment for future research to stimulate privacy-protective behavior
- Inter-disciplinary perspective and favorable environment for further research opportunities in the privacy behavior domain
2. Literature Review Scope and Methodology
2.1. Sampling Methodology
2.2. Exclusion Criteria
3. Factors That Affect ICT Users’ Privacy Behavior
4. How Behavioral Factors Affect ICT Users’ Privacy Behavior
4.1. Demographics
4.2. Privacy Risk Perception
4.3. Financial Exchanges, Benefits, and Fatigue
4.4. Needs and Necessity
4.5. Privacy Concerns
4.6. Trust, Control, and Confidence
4.7. Education, Interaction, Experience, Sensitivity of Information, Visualization, and Time-Lapse
4.8. Privacy Awareness
5. Discussion
5.1. Recommendations for the Private Sector and Practitioners
5.2. Recommendations for Policy Makers and Educational Institutes
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kokolakis, S. Privacy attitudes and privacy behaviour: A review of current research on the privacy paradox phenomenon. Comput. Secur. 2017, 64, 122–134. [Google Scholar] [CrossRef]
- Hallam, C.; Zanella, G. Online self-disclosure: The privacy paradox explained as a temporally discounted balance between concerns and rewards. Comput. Hum. Behav. 2017, 68, 217–227. [Google Scholar] [CrossRef]
- Li, H.; Luo, X.; Zhang, J.; Xu, H. Resolving the privacy paradox: Toward a cognitive appraisal and emotion approach to online privacy behaviors. Inf. Manag. 2017, 54, 1012–1022. [Google Scholar] [CrossRef]
- Gerber, N.; Gerber, P.; Volkamer, M. Explaining the privacy paradox: A systematic review of literature investigating privacy attitude and behavior. Comput. Secur. 2018, 77, 226–261. [Google Scholar] [CrossRef]
- Dhir, A.; Kaur, P.; Lonka, K.; Nieminen, M. Why do adolescents untag photos on Facebook? Comput. Hum. Behav. 2016, 55, 1106–1115. [Google Scholar] [CrossRef]
- Shane-Simpson, C.; Manago, A.; Gaggi, N.; Gillespie-Lynch, K. Why do college students prefer Facebook, Twitter, or Instagram? Site affordances, tensions between privacy and self-expression, and implications for social capital. Comput. Hum. Behav. 2018, 86, 276–288. [Google Scholar] [CrossRef] [Green Version]
- Menard, P.; Bott, G. Analyzing IOT users’ mobile device privacy concerns: Extracting privacy permissions using a disclosure experiment. Comput. Secur. 2020, 95, 101856. [Google Scholar] [CrossRef]
- Mathews-Hunt, K. CookieConsumer: Tracking online behavioural advertising in Australia. Comput. Law Secur. Rev. 2016, 32, 55–90. [Google Scholar] [CrossRef]
- Palos-Sancheza, P.; Saurab, J.R.; Martin-Veliciaa, F. A study of the effects of programmatic advertising on users’ concerns about privacy overtime. J. Bus. Res. 2019, 96, 61–72. [Google Scholar] [CrossRef]
- Hinds, J.; Williams, E.; Joinson, A. “It wouldn’t happen to me”: Privacy concerns and perspectives following the Cambridge Analytica scandal. Int. J. Hum. Comput. Stud. 2020, 143, 102498. [Google Scholar] [CrossRef]
- Association for Information Systems. Senior Scholars’ of Journals. Available online: https://aisnet.org/page/SeniorScholarBasket?&hhsearchterms=%22basket%22 (accessed on 10 June 2022).
- Acquisti, A.; Brandimarte, L.; Loewenstein, G. Privacy and human behavior in the age of information. Science 2015, 347, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Alashoor, T.; Al-Maidani, N.; Al-Jabri, I. The Privacy Calculus under Positive and Negative Mood States. In Proceedings of the International Conference on Information Systems, San Francisco, CA, USA, 13–16 December 2018. [Google Scholar]
- Alawadhia, R.; Hussain, T. A Method Toward Privacy Protection in Context-Aware Environment. In Proceedings of the 2nd International Conference on Emerging Data and Industry 4.0 (EDI40), Leuven, Belgium, 29 April–2 May 2019. [Google Scholar]
- Ameen, N.; Hosany, S.; Paul, J. The personalisation-privacy paradox: Consumer interaction with smart technologies and shopping mall loyalty. Comput. Hum. Behav. 2021, 126, 106976. [Google Scholar] [CrossRef]
- Arıca, R.; Cihan, C.; Onur, Ç.; Abdülkadir, C.; Hsu, M.-J.; Valentina, C. Travel experience sharing on social media: Effects of the importance attached to content sharing and what factors inhibit and facilitate it Travel. Int. J. Contemp. Hosp. Manag. 2022, 34, 1566–1586. [Google Scholar] [CrossRef]
- Avshalom, G.; Yaron, A. An analytical framework for online privacy research: What is missing? Inf. Manag. 2017, 54, 948–957. [Google Scholar]
- Ayaburi, E.; Treku, D. Effect of penitence on social media trust and privacy concerns: The case of Facebook. Int. J. Inf. Manag. 2020, 50, 171–181. [Google Scholar] [CrossRef]
- Bal, G. Explicitness of Consequence Information in Privacy Warnings: Experimentally Investigating the Effects on Perceived Risk, Trust, and Privacy Information Quality. In Proceedings of the 35th International Conference on Information Systems (ICIS 2014), Auckland, New Zealand, 14–17 December 2014. [Google Scholar]
- Bachura, E.; Valecha, R.; Chen, R.; Rao, R. The OPM Data Breach: An Investigation of Shared Emotional Reactions on Twitter. MIS Q. 2022, 46, 881–910. [Google Scholar] [CrossRef]
- Becker, M. Understanding users’ health information privacy concerns for health wearables. In Proceedings of the 51st Hawaii International Conference on System Sciences, Hilton Waikoloa Village, HI, USA, 3–6 January 2018; Volume 9, pp. 3261–3270. [Google Scholar] [CrossRef] [Green Version]
- Bhagat, S.; Saminathan, K.; Agarwal, A.; Dowsley, R.; De Cock, M.; Nascimento, A. Privacy-preserving user profiling with Facebook likes. In Proceedings of the IEEE International Conference on Big Data, Seattle, WA, USA, 10–13 December 2018; pp. 5298–5299. [Google Scholar]
- Buchanan, T.; Paine, C.; Joinson, A.N.; Reips, U.D. Development of measures of online privacy concern and protection for use on the internet. J. Am. Soc. Inf. Sci. Technol. 2007, 58, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Buck, C. Stop Disclosing Personal Data about Your Future Self. AIS Electronic Library (AISeL). In Proceedings of the AMCIS 2017, Boston, MA, USA, 10–12 August 2017. [Google Scholar]
- Cerruto, F.; Cirillo, S.; Desiato, D.; Gambardella, S.M.; Polese, G. Social network data analysis to highlight privacy threats in sharing data. J. Big Data 2022, 9, 19. [Google Scholar] [CrossRef]
- Chakraborty, R.; Vishik, C.; Rao, H. Privacy preserving actions of older adults on social media: Exploring the behavior of opting out of information sharing. Decis. Support Syst. 2013, 55, 948–956. [Google Scholar] [CrossRef]
- Chawla, N.; Kumar, B. E-Commerce and Consumer Protection in India: The Emerging Trend. J. Bus. Ethics 2021, 180, 581–604. [Google Scholar] [CrossRef]
- Choi, H.; Park, J.; Jung, Y. The role of privacy fatigue in online privacy behavior. Comput. Hum. Behav. 2018, 81, 42–51. [Google Scholar] [CrossRef]
- Chou, H.; Liu, Y.; Chou, C. Privacy behavior profiles of underage Facebook users. Comput. Educ. 2019, 128, 473–485. [Google Scholar] [CrossRef]
- Cloarec, J.; Meyer-Waarden, L.; Munzel, A. The personalization–privacy paradox at the nexus of social exchange and construal level theories. Psychol. Mark. 2022, 39, 647–661. [Google Scholar] [CrossRef]
- D’Souza, G.; Phelps, J.E. The privacy paradox: The case of secondary disclosure. Rev. Mark. Sci. 2009, 7, 4. [Google Scholar] [CrossRef]
- Davazdahemami, B.; Hammer, B.; Luse, A.; Kalgotra, P. The Role of Parallelism in Resolving the Privacy Paradox of Information Disclosure in Social Networks. In Proceedings of the Thirty Ninth International Conference on Information Systems, San Francisco, CA, USA, 13–16 December 2018. [Google Scholar]
- Dienlin, T.; Trepte, S. Is the privacy paradox a relic of the past? An in-depth analysis of privacy attitudes and privacy behaviors. Eur. J. Soc. Psychol. 2015, 45, 285–297. [Google Scholar] [CrossRef]
- Ermakova, T.; Fabian, B.; Zarnekow, R. Acceptance of Health Clouds—A Privacy Calculus Perspective. In Proceedings of the ECIS 2014 Proceedings—22nd European Conference on Information Systems, Tel Aviv, Israel, 9–11 June 2014. [Google Scholar]
- Figl, K.; Lehrer, C. Privacy Nudging: How the Design of Privacy Settings Affects Disclosure in Social Networks. In Proceedings of the Europian Conference on Information Systems (ECIS 2020), Virtual, 15–17 June 2020. [Google Scholar]
- Flender, C.; Müller, G. Type indeterminacy in privacy decisions: The privacy paradox revisited. In Quantum Interaction; Springer: Berlin/Heidelberg, Germany, 2012; pp. 148–159. [Google Scholar]
- Fox, G.; Tonge, C.; Lynn, T.; Mooney, J. Communicating compliance: Developing a GDPR privacy label. In Proceedings of the Americas Conference on Information Systems, New Orleans, LA, USA, 16–18 August 2018. [Google Scholar]
- Gabel, M.; Nils, F.; Nüesch, S. The (In)Effectiveness of Incentives—A Field Experiment on the Adoption of Personal Electronic Health Records. In Proceedings of the ICIS 2019, Munich, Germany, 15–18 December 2019. [Google Scholar]
- Gaurav, B. Three Research Essays on Examining Online Privacy Concerns: The Role of Personal Dispositions, Contexts and Privacy-Assurance Features. In Proceedings of the AMCIS 2007, Keystone, CO, USA, 9–12 August 2007; Volume 381. Available online: https://aisel.aisnet.org/amcis2007/381 (accessed on 1 May 2023).
- Ghose, A.; Li, B.; Macha, M.; Sun, C.; Foutz, N.Z. Trading Privacy for Public Good: How Did America React During COVID-19? NYU Stern School of Business: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Gómez-Barroso, J. Experiments on personal information disclosure: Past and future avenues. Telemat. Inform. 2018, 35, 1473–1490. [Google Scholar] [CrossRef]
- Hatamian, M.; Serna, J.; Rannenberg, K. Revealing the unrevealed: Mining smartphone users privacy perception on app markets. Comput. Secur. 2019, 83, 332–353. [Google Scholar] [CrossRef] [Green Version]
- Heravi, A.; Mubarak, S.; Raymond Choo, K. Information privacy in online social networks: Uses and gratification perspective. Comput. Hum. Behav. 2018, 84, 441–459. [Google Scholar] [CrossRef]
- Hew, J.; Tan, G.; Lin, B.; Ooi, K. Generating travel-related contents through mobile social tourism: Does privacy paradox persist? Telemat. Inform. 2017, 34, 914–935. [Google Scholar] [CrossRef]
- Hofstra, B.; Corten, R.; van Tubergen, F. Understanding the privacy behavior of adolescents on Facebook: The role of peers, popularity and trust. Comput. Hum. Behav. 2016, 60, 611–621. [Google Scholar] [CrossRef]
- Ioannou, A.; Tussyadiah, I.; Lu, Y. Privacy concerns and disclosure of biometric and behavioral data for travel. Int. J. Inf. Manag. 2020, 54, 102122. [Google Scholar] [CrossRef]
- Ioannou, A.; Tussyadiah, I. Privacy and surveillance attitudes during health crises: Acceptance of surveillance and privacy protection behaviours. Technol Soc. 2021, 67, 101774. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.; Potts, C.; Jensen, C.D. Privacy practices of Internet users: Self-report versus observed behavior. Int. J. Hum.-Comput. Stud. 2017, 98, 82–91. [Google Scholar] [CrossRef]
- Jeong, Y.; Kim, Y. Privacy concerns on social networking sites: Interplay among posting types, content, and audiences. Comput. Hum. Behav. 2017, 69, 302–310. [Google Scholar] [CrossRef]
- Jia, H.; Xu, H. Measuring individuals’ concerns over collective privacy on social networking sites. Cyberpsychol. J. Psychosoc. Res. Cyberspace 2016, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J. Social Login Acceptance: A DIF Study of Differential Factors. In Proceedings of the PACIS 2018, Jokohama, Japan, 26–30 June 2018; Volume 20. Available online: https://aisel.aisnet.org/pacis2018/20 (accessed on 1 May 2023).
- Johnson, D.G. Human-computer interaction: Psychology as a science of design. In The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies, and Emerging Applications, 3rd ed.; Jacko, J., Ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 3–18. [Google Scholar]
- Jordaan, Y.; Van Heerden, G. Online privacy-related predictors of Facebook usage intensity. Comput. Hum. Behav. 2017, 70, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Jozani, M.; Ayaburi, E.; Ko, M.; Choo, K. Privacy concerns and benefits of engagement with social media-enabled apps: A privacy calculus perspective. Comput. Hum. Behav. 2020, 107, 106260. [Google Scholar] [CrossRef]
- Junga, Y.; Park, J. An investigation of relationships among privacy concerns, affective responses, and coping behaviors in location-based services. Int. J. Inf. Manag. 2018, 43, 15–24. [Google Scholar] [CrossRef]
- Kang, H.; Shin, W.; Tam, L. Differential responses of loyal versus habitual consumers towards mobile site personalization on privacy management. Comput. Hum. Behav. 2016, 56, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Kayes, I.; Iamnitchi, A. Privacy and security in online social networks: A survey. Online Soc. Netw. Media 2017, 3–4, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Keith, M.; Thompson, S.; Hale, J.; Greer, C. Examining the rationality of information disclosure through mobile devices. In Proceedings of the International Conference on Information Systems (ICIS 2012), Orlando, FL, USA, 16–19 December 2012; Volume 3. [Google Scholar]
- Keith, M.; Maynes, C.; Lowry, P.; Babb, J. Privacy fatigue: The effect of privacy control complexity on consumer electronic information disclosure. In Proceedings of the International Conference on Information Systems (ICIS 2014), Auckland, New Zealand, 14–17 December 2014. [Google Scholar] [CrossRef]
- Keith, M.; Ngo, N.; Babb, J. The effects of consumer self-regulation and risk immediacy on mobile information disclosure. In Proceedings of the International Conference on Interaction Sciences, Savannah, GA, USA, 7–9 August 2014. [Google Scholar]
- Kim, J.; Kim, T.; Wojdynski, B.; Jun, H. Getting a Little Too Personal? Positive and Negative Effects of Personalized Advertising on Online Multitaskers. Telemat. Inform. 2022, 71, 101831. [Google Scholar] [CrossRef]
- Kitsios, F.; Mitsopoulou, E.; Moustaka, E.; Kamariotou, M. User-Generated Content behavior and digital tourism services: A SEM-neural network model for information trust in social networking sites. Int. J. Inf. Manag. Data Insights 2022, 2, 100056. [Google Scholar] [CrossRef]
- Knijnenburg, B.; Kobsa, A.; Jin, H. Dimensionality of information disclosure behavior. Int. J. Hum.-Comput. Stud. 2013, 71, 1144–1162. [Google Scholar] [CrossRef] [Green Version]
- Korunovska, J.; Kamleitner, B.; Spiekermann, S. The Challenges and Impact of Privacy Policy Comprehension. In Proceedings of the Systematic Bias in Notice Comprehension Twenty-Eigth European Conference on Information Systems (ECIS2020), Marrakesh, Morocco, 15–17 June 2020. [Google Scholar]
- Kosinski, M.; Stillwell, D.; Graepel, T. Private traits and attributes are predictable from digital records of human behavior. Proc. Natl. Acad. Sci. USA 2013, 110, 5802–5805. [Google Scholar] [CrossRef] [PubMed]
- Krasnova, H.; Eling, N.; Abramova, O.; Buxmann, P. Dangers of ‘Facebook Login’ for Mobile Apps: Is There a Price Tag for Social Information? In Proceedings of the International Conference on Information Systems, Auckland, New Zealand, 14–17 December 2014. [Google Scholar]
- Kraus, L.; Wechsung, I.; Möller, S. Psychological needs as motivators for security and privacy actions on smartphones. J. Inf. Secur. Appl. 2017, 34, 34–45. [Google Scholar] [CrossRef]
- Kurt, M. Determination of in internet privacy behaviours of students. Procedia—Soc. Behav. Sci. 2010, 9, 1244–1250. [Google Scholar] [CrossRef]
- Kwee-Meier, S.; Bützler, J.E.; Schlick, C. Development and validation of a technology acceptance model for safety-enhancing, wearable locating systems. Behav. Inf. Technol. 2016, 35, 394–409. [Google Scholar] [CrossRef]
- Kwee-Meier, S.; Sonja Th Altendorf, E.; Mertens, A.; Schlick, C.M. Safety enhancing locating wearables on passenger ships: Privacy and security perceptions by the elderly. IFIP Adv. Inf. Commun. Technol. 2016, 474, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Lankton, N.; McKnight, D.; Tripp, J. Facebook privacy management strategies: A cluster analysis of user privacy behaviors. Comput. Hum. Behav. 2017, 76, 149–163. [Google Scholar] [CrossRef]
- Lee, E.; Kim, J.; Kim, J.; Koo, C. Information Privacy Behaviors during the COVID-19 Pandemic: Focusing on the Restaurant Context. Inf. Syst. Front. 2022. Epub ahead of print. [Google Scholar] [CrossRef]
- Li, C.; Chau, P. Leveraging Communication Tools to Reduce Consumers’ Privacy Concern in the On-demand Services: An Extended S-O-R Model of Perceived Control and Structural Assurance. In Proceedings of the PACIS 2019, Xi’an, China, 8–12 July 2019; Volume 48. Available online: https//aisel.aisnet.org/pacis/48 (accessed on 5 April 2023).
- Li, K.; Lin, Z.; Wang, X. An empirical analysis of users’ privacy disclosure behaviors on social network sites. Inf. Manag. 2015, 52, 882–891. [Google Scholar] [CrossRef]
- Li, P.; Cho, H.; Goh, Z. Unpacking the process of privacy management and self-disclosure from the perspectives of regulatory focus and privacy calculus. Telemat. Inform. 2019, 41, 114–125. [Google Scholar] [CrossRef]
- Li, K.; Cheng, L.; Teng, C.-I. Voluntary sharing and mandatory provision: Private information disclosure on social networking sites. Inf. Process. Manag. 2020, 57, 102128. [Google Scholar] [CrossRef]
- Li, Y.-J.; Cheung, C.M.K.; Shen, X.-L.; Lee, M.K.O. When Socialization Goes Wrong: Understanding the We-Intention to Participate in Collective Trolling in Virtual Communities. J. Assoc. Inf. Syst. 2022, 23, 678–706. [Google Scholar] [CrossRef]
- Liao, C.; Liu, C.; Chen, K. Examining the impact of privacy, trust and risk perceptions beyond monetary transactions: An integrated model. Electron. Commer. Res. Appl. 2011, 10, 702–715. [Google Scholar] [CrossRef]
- Lidynia, C.; Brauner, P.; Ziefle, M. A step in the right direction—Understanding privacy concerns and perceived sensitivity of fitness trackers. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Los Angeles, CA, USA, 17–21 July 2017; pp. 42–53. [Google Scholar] [CrossRef]
- Lu, Y.; He, L.; Wu, H.; Feng-Kwei, W.; Shiqiao, J. A meta-analysis to explore privacy cognition and information disclosure of internet users. Int. J. Inf. Manag. 2020, 51, 102015. [Google Scholar]
- Mager, S.; Kranz, J. Consent Notices and the Willingness-to-Sell Observational Data: Evidence from User Reactions in the Field. In Proceedings of the European Conference on Information Systems, Virtual, 14–16 June 2021. [Google Scholar]
- Marreiros, H.; Tonin, M.; Vlassopoulos, M.; Schraefel, M. “Now that you mention it”: A survey experiment on information, inattention and online privacy. J. Econ. Behav. Organ. 2017, 140, 1–17. [Google Scholar] [CrossRef]
- McCoy, S.; Everard, A.; Galletta, D.F.; Moody, G.D. Here we go again! The impact of website ad repetition on recall, intrusiveness, attitudes, and site revisit intentions. Inf. Manag. 2017, 54, 14–24. [Google Scholar] [CrossRef]
- Mosafer, H.; Sarabadani, J.; Sohrabi BYazdani, H.R.; Manian, A. The Role of IT Identity in Self-disclosure Behavior on Social Networking Sites. In Proceedings of the AMCIS 2021, Virtual, 9–13 August 2021; Volume 16. Available online: https//aisel.aisnet.org/amcis/adopt_diffusion/adopt_diffusion/16 (accessed on 22 June 2023).
- Moshki, H.; Barki, H. Individuals’ IT-related privacy concerns: A two-phase cognitive model. In Proceedings of the 8th International Conference, UAHCI 2014, Held as Part of HCI International 2014, Heraklion, Greece, 22–27 June 2014. Part IV. [Google Scholar]
- Mousavi, R.; Zhao, K. Examining the Impacts of Airbnb Review Policy Change on Listing. J. Assoc. Inf. Syst. 2022, 23, 303–328. [Google Scholar]
- Mullins, J.K.; Stewart, P.A.; Greitens, T.J. Facing Forward: Policy for Automated Facial Expression Analysis. J. Assoc. Inf. Syst. 2022, 23, 1347–1353. [Google Scholar] [CrossRef]
- Mutimukwe, C.; Kolkowska, E.; Grönlund, Å. Information privacy in e-service: Effect of organizational privacy assurances on individual privacy concerns, perceptions, trust and self-disclosure behavior. Gov. Inf. Q. 2020, 37, 101413. [Google Scholar] [CrossRef]
- Nikkhah, H.R.; Grover, V. An Empirical Investigation of Company Response to Data Breaches. MIS Q. 2022, 46, 2163–2196. [Google Scholar] [CrossRef]
- Nikkhah, H.R.; Sabherwal, R. Mobile Cloud-Computing Applications: A Privacy Cost-Benefit Model. In Proceedings of the Americas Conference on Information Systems, Boston, MA, USA, 10–12 August 2017. [Google Scholar]
- Niknejad, N.; Ismail, W.B.; Mardani, A.; Liao, H.; Ghani, I. A comprehensive overview of smart wearables: The state of the art literature, recent advances, and future challenges. Eng. Appl. Artif. Intell. 2020, 90, 103529. [Google Scholar] [CrossRef]
- Nyshadham, E.; Castano, D. Affect and Online Privacy Concerns. SSRN Electron. J. 2012, 5. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.J. Digital literacy and privacy behavior online. Commun. Res. 2011, 40, 215–236. [Google Scholar] [CrossRef]
- Park, Y.J. Do men and women differ in privacy? Gendered privacy and (in)equality in the Internet. Comput. Hum. Behav. 2015, 50, 252–258. [Google Scholar] [CrossRef]
- Paspatis, I.; Tsohou, A.; Kokolakis, S. AppAware: A policy visualization model for mobile applications. Inf. Comput. Secur. 2020, 28, 116–132. [Google Scholar] [CrossRef]
- Pilton, C.; Faily, S.; Henriksen-Bulmer, J. Evaluating privacy—Determining user privacy expectations on the web. Comput. Secur. 2021, 105, 102241. [Google Scholar] [CrossRef]
- Quayyum, F.; Cruzes, D.; Jaccheri, L. Cybersecurity awareness for children: A systematic literature review. Int. J. Child-Comput. Interact. 2021, 30, 100343. [Google Scholar] [CrossRef]
- Ragnedda, M.; Ruiu, M.L.; Addeo, F. The self-reinforcing effect of digital and social exclusion: The inequality loop. Telemat. Informatics. 2022, 72, 101852. [Google Scholar] [CrossRef]
- Reith, R.; Buck, C.; Dennis, W.; Bettina, L.; Eymann, T. How privacy affects the acceptance of mobile payment solutions. In Proceedings of the 27th European Conference on Information Systems (ECIS), Stockholm and Uppsala, Sweden, 8–14 June 2019. [Google Scholar]
- Reith, R.; Fortagne, M.A.; Diel, S.; Buck, C.; Lis, B.; Eymann, T. Pandemic Containment with Digital Measures: Acceptance and Privacy Aspects of Contact Tracing Apps. In Proceedings of the ECIS 2021, Marrakech, Moroco, 14–16 June 2021; Volume 6. Available online: https://aisel.aisnet.org/ecis2021_rp/6 (accessed on 1 May 2023).
- Renaud, K.; Zimmermann, V. Ethical guidelines for nudging in information security & privacy. Int. J. Hum.-Comput. Stud. 2018, 120, 22–35. [Google Scholar]
- Reynolds, B.; Venkatanathan, J.; Goncalves, J.; Kostakos, V. Sharing Ephemeral Information in Online Social Networks: Privacy Perceptions and Behaviours. In Human-Computer Interaction—INTERACT 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 204–215. [Google Scholar] [CrossRef] [Green Version]
- Risius, M.; Baumann, A.; Hanna, K. Developing a New Paradigm: Introducing the Intention-Behaviour Gap to the Privacy Paradox Phenomenon. In Proceedings of the Twenty-Eigth European Conference on Information Systems (ECIS2020), Marrakesh, Morocco, 15–17 June 2020. [Google Scholar]
- Schomakers, E.; Lidynia, C.; Müllmann, D.; Ziefle, M. Internet users’ perceptions of information sensitivity—Insights from Germany. Int. J. Inf. Manag. 2019, 46, 142–150. [Google Scholar] [CrossRef]
- Schreiber, T.; Deuker, A.; Albers, A.; Neves, M. The Privacy Trade-Off: App Usage on OSN. In Proceedings of the AMCIS 2013, Chicago, IL, USA, 15–17 August 2013. [Google Scholar]
- Schreiner, M.; Hess, T. Why Are Consumers Willing to Pay for Privacy? An Application of the Privacy-freemium Model to Media Companies. In Proceedings of the 23rd European Conference on Information Systems, Münster, Germany, 26–29 May 2015. [Google Scholar]
- Segura, A.; Alsadoon, A.; Costadopoulos, N.; Prasad, P.W.C. Ethical implications of user perceptions of wearable devices. Sci. Eng. Ethics 2018, 24, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Senarath, A.; Arachchilage, N. Understanding user privacy expectations: A software developer’s perspective. Telemat. Inform. 2018, 35, 1845–1862. [Google Scholar] [CrossRef]
- Sharma, S.; Crossler, R. Disclosing too much? Situational factors affecting information disclosure in social commerce environment. Electron. Commer. Res. Appl. 2014, 13, 305–319. [Google Scholar] [CrossRef]
- Spiekermann, S.; Korunovska, J.; Bauer, C. Psychology of Ownership and Asset Defense: Why People Value Their Personal Information Beyond Privacy. In Proceedings of the International Conference on Information Systems (ICIS 2012), Orlando, FL, USA, 16–19 December 2012; Volume 4. [Google Scholar] [CrossRef] [Green Version]
- Sschwaig, S.; Grover Segars, A.; Fiedler, K.A. Model of Consumers’ Perceptions of the Invasion of Information Privacy. Inf. Management. 2013, 50, 1–12. [Google Scholar] [CrossRef]
- Strycharz, J.; Smit, E.; Helberger, N.; van Noort, G. No to cookies: Empowering impact of technical and legal knowledge on rejecting tracking cookies. Comput. Hum. Behav. 2021, 120, 106750. [Google Scholar] [CrossRef]
- Stutzman, F.; Capra, R.; Thompson, J. Factors mediating disclosure in social network sites. Comput. Hum. Behav. 2011, 27, 590–598. [Google Scholar] [CrossRef] [Green Version]
- Taddicken, M. The ‘privacy paradox’ in the social web: The impact of privacy concerns, individual characteristics, and the perceived social relevance on different forms of self-Disclosure. J. Comput.-Mediat. Commun. 2014, 19, 248–273. [Google Scholar] [CrossRef] [Green Version]
- Terlizzi, M.; Brandimarte LBrown, S.; Sanchez, O. Privacy Concerns and Protection Motivation Theory in the Context of Mobile Banking. In Proceedings of the 27th European Conference on Information Systems (ECIS), Stockholm and Uppsala, Sweden, 8–14 June 2019; ISBN 978-1-7336325-0-8. Research Papers. Available online: https://aisel.aisnet.org/ecis2019_rp/24 (accessed on 1 May 2023).
- Tsai, J.; Egelman, S.; Cranor, L.; Acquisti, A. The Effect of Online Privacy Information on Purchasing Behavior: An Experimental Study. Inf. Syst. Res. 2011, 22, 254–268. [Google Scholar] [CrossRef] [Green Version]
- Tsai, J.Y.; Kelley, P.G. Who’s viewed you? The impact of feedback in a mobile location-sharing application. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems ACM, Toronto, ON, Canada, 26 April–1 May 2014; pp. 2005–2008. [Google Scholar]
- Tse, D.; Xu, X.; Bai, M.; Chen, Z.; Meng, X.; Wang, Y. Privacy Issues in online social networks: User behaviors and third-party applications. In Proceedings of the PACIS 2014 Proceedings, Chengdu, China, 24–28 June 2014; Available online: http://aisel.aisnet.org/pacis2014/42 (accessed on 25 July 2023).
- van Zoonen, L. Privacy concerns in smart cities. Gov. Inf. Q. 2016, 33, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Viswanath, A.; Das, S. Would you Trust a Bot for Healthcare Advice? An Empirical Investigation. In Proceedings of the 24th Pacific Asia Conference on Information Systems, PACIS 2020, Dubai, United Arab Emirate, 22–24 June 2020. [Google Scholar]
- Wall, J.; Warkentin, M. Perceived argument quality’s effect on threat and coping appraisals in fear appeals: An experiment and exploration of realism check heuristics. Inf. Manag. 2019, 56, 103157. [Google Scholar] [CrossRef]
- Wang, C.; Zhan, N.; Wang, C. Managing Privacy in the Digital Economy. Fundam. Res. 2021, 1, 543–551. [Google Scholar] [CrossRef]
- Wiegard, R.B.; Breitner, M.H. Smart services in healthcare: A risk-benefit-analysis of pay-as-you-live services from customer perspective in Germany. Electron. Mark. 2017, 29, 1–17. [Google Scholar] [CrossRef]
- Wieneke, A.; Lehrer, C.; Zeder, R.; Jung, R. Privacy-related decision-making in the context of wearable use. In Proceedings of the Pacific Asia Conference on Information Systems, Chiayi, Taiwan, 27 June–1 July 2016. Paper 67. [Google Scholar]
- Wilson, D.W.; Valacich, J. Unpacking the Privacy Paradox: Irrational Decision-Making within the Privacy Calculus. In Proceedings of the International Conference on Information Systems (ICIS 2012), Orlando, FL, USA, 16–19 December 2012; Volume 5, pp. 4152–4162. [Google Scholar]
- Wilson, D.; Schuetzler, R.; Dorn, B.; Proudfoot, J.G. When Disclosure is Involuntary: Empowering Users with Control to Reduce Concerns. Information Systems and Quantitative Analysis Faculty Proceedings & Presentations. 2015. Available online: https://digitalcommons.unomaha.edu/isqafacproc/17 (accessed on 1 May 2023).
- Wisniewski, P.; Knijnenburg, B.; Lipford, H. Making privacy personal: Profiling social network users to inform privacy education and nudging. Int. J. Hum.-Comput. Stud. 2017, 98, 95–108. [Google Scholar] [CrossRef]
- Wu, C.; Li, W. Why Do Consumers Boycott Personalization Marketing? A Perspective from Multidimensional Development Theory and Psychological Contract Violation. In Proceedings of the PACIS 2019, Xi’an, China, 8–12 July 2019; Volume 200. [Google Scholar]
- Xu, H.; Parks, R.; Chu, C.; Zhang, X. Information Disclosure and Online Social Networks: From the Case of Facebook News Feed Controversy to a Theoretical Understanding. In Proceedings of the 16th Americas Conference on Information Systems 2010 (AMCIS 2010), Lima, Peru, 2010, 12–15 August; Volume 7, p. 503.
- Zhang, Y.; He, W.; Peng, L. How Perceived Pressure Affects Users’ Social Media Fatigue Behavior: A Case on WeChat. J. Comput. Inf. Syst. 2020, 62, 337–348. [Google Scholar] [CrossRef]
- Zareef, M.; Gurvirender, T. The Role of Cognitive Disposition in Deconstructing the Privacy Paradox: A Neuroscience Study. In Proceedings of the AMCIS 2015, Puerto Rico, 13–15 August 2015. [Google Scholar]
- Zalmanson, L.; Oestreicher-Singer, G.; Ecker, Y. The Role of Social Cues and Trust in Users’ Private Information Disclosure. MIS Q. 2021, 46, 1109–1134. [Google Scholar] [CrossRef]
- European Union. EU Digital COVID Certificate. Available online: https://ec.europa.eu/info/live-work-travel-eu/coronavirus-response/safe-covid-19-vaccines-europeans/eu-digital-covid-certificate_en (accessed on 24 April 2023).
Source | Number of Articles |
---|---|
European Journal of Information Systems (EJIS) | 55 |
Strategic Information Systems (Search in Science Direct) | 58 |
MIS Quarterly (MISQ) | 32 |
International Conference on Information Systems (ICIS) | 14 |
Information Systems Research (ISR) | 13 |
Americas Conference on Information Systems (AMCIS) | 11 |
European Conference on Information Systems (ECIS) | 9 |
Journal of the Association for Information Systems (JAIS) | 12 |
Pacific Asia Conference on Information Systems (PACIS) | 7 |
Journal of Information Management Systems | 5 |
Recognized international journals with citation index | 10 |
Total number of articles | 226 |
Factors | Number of Articles That Identify the Factor |
---|---|
Financial Exchanges/benefits/usefulness | 31 articles |
Privacy Risk Perception | 27 articles |
Trust/Control/confidence/fear | 35 articles |
Privacy Concerns | 63 articles |
“Needs” psychological engagement/necessity | 16 articles |
Sensitivity of information | 3 articles |
Privacy Awareness | 21 articles |
Time lapse | 7 articles |
Education/Visualization/Interaction/ Experience | 19 articles |
Demographics (age/gender/country, political position, income, etc.) | 24 articles |
Dimensionality/Complexity of a privacy decision making | 10 articles |
References | Demographics | Privacy Risk Perception | Financial Exchanges/Benefits/Fatigue | Needs Necessity | Privacy Concerns | Trust/Control/Confidence/Fear | Sensitivity of Information | Time | Education/Visualization/Interaction/Experience | Dimensionality/Complexity | Privacy Awareness |
---|---|---|---|---|---|---|---|---|---|---|---|
[12] Acquisti et al. (2015) | √ | ||||||||||
[13] Alashoor et al. (2018) | √ | ||||||||||
[14] Alawadhia and Hussain (2019) | √ | ||||||||||
[15] Ameen et al. (2021) | √ | √ | |||||||||
[16] Arica et al. (2022) | √ | ||||||||||
[17] Avshalom and Yaron (2017) | √ | √ | √ | √ | √ | √ | |||||
[18] Ayaburi and Treku (2020) | √ | √ | |||||||||
[19] Bal (2014) | √ | √ | |||||||||
[20] Bachura et al. (2022) | √ | ||||||||||
[21] Becker (2018) | √ | ||||||||||
[22] Bhagat et al. (2018) | √ | ||||||||||
[23] Buchanan et al. (2007) | √ | ||||||||||
[24] Buck (2017) | √ | √ | |||||||||
[25] Cerruto et al. (2022) | √ | ||||||||||
[26] Chakraborty et al. (2013) | √ | √ | |||||||||
[27] Chawla and Kumar (2021) | √ | ||||||||||
[28] Choi et al. (2018) | √ | √ | √ | ||||||||
[29] Chou et al. (2019) | √ | √ | √ | ||||||||
[30] Cloarec et al. (2022) | √ | √ | √ | √ | |||||||
[31] D’Souza and Phelps (2009) | √ | √ | |||||||||
[32] Davazdahemami et al. (2018) | √ | √ | |||||||||
[5] Dhir et al. (2016) | √ | ||||||||||
[33] Dienlin and Trepte (2015) | √ | √ | |||||||||
[34] Ermakova et al. (2014) | √ | √ | √ | √ | |||||||
[35] Figl et al. (2020) | √ | ||||||||||
[36] Flender and Müller (2012) | √ | ||||||||||
[37] Fox et al. (2018) | √ | √ | √ | ||||||||
[38] Gabel et al. (2019) | √ | √ | |||||||||
[39] Gaurav (2008) | √ | √ | √ | ||||||||
[4] Gerber et al. (2018) | √ | √ | √ | √ | √ | √ | |||||
[40] Ghose et al. (2020) | √ | √ | √ | ||||||||
[41] Gómez-Barroso (2018) | √ | √ | |||||||||
[2] Hallam and Zanella (2017) | √ | √ | √ | ||||||||
[42] Hatamian et al. (2019) | √ | ||||||||||
[43] Heravi et al. (2018) | √ | √ | √ | √ | √ | √ | |||||
[44] Hew et al. (2017) | √ | √ | |||||||||
[45] Hofstra et al. (2016) | √ | √ | √ | ||||||||
[46] Ioannou et al. (2020) | √ | √ | √ | √ | √ | √ | |||||
[47] Ioannou and Tussydiah (2021) | √ | √ | |||||||||
[48] Jensen et al. (2017) | √ | √ | |||||||||
[49] Jeong and Kim (2017) | √ | √ | |||||||||
[50] Jia and Xu (2016) | √ | √ | √ | ||||||||
[51] Jiang (2018) | √ | ||||||||||
[52] Johnson (2013) | √ | ||||||||||
[53] Jordaan and Van Heerden (2017) | √ | √ | √ | √ | |||||||
[54] Jozani et al. (2020) | √ | √ | |||||||||
[55] Junga and Park (2018) | √ | ||||||||||
[56] Kang et al. (2016) | √ | √ | |||||||||
[57] Kayes and Iamnitchi (2017) | √ | ||||||||||
[58] Keith et al. (2012) | √ | √ | √ | ||||||||
[59] Keith et al. (2014a) | √ | √ | √ | ||||||||
[60] Keith et al. (2014b) | √ | √ | |||||||||
[61] Kim et al. (2022) | √ | √ | |||||||||
[62] Kitsios et al. (2022) | √ | ||||||||||
[63] Knijnenburg et al. (2013) | √ | √ | √ | √ | |||||||
[64] Korunovska et al. (2020) | √ | √ | |||||||||
[65] Kosinski et al. (2013) | √ | ||||||||||
[66] Krasnova et al. (2014) | √ | ||||||||||
[67] Kraus et al. (2017) | √ | ||||||||||
[68] Kurt (2010) | √ | √ | √ | ||||||||
[69,70] Kwee-Meier et al. (2016a,b) | √ | √ | |||||||||
[71] Lankton et al. (2017) | √ | √ | √ | √ | √ | √ | √ | ||||
[72] Lee et al. (2022) | √ | √ | |||||||||
[73] Li and Chau (2019) | √ | √ | |||||||||
[74] Li et al. (2015) | √ | √ | √ | √ | |||||||
[3] Li et al. (2017) | √ | √ | √ | √ | |||||||
[75] Li et al. (2019) | √ | ||||||||||
[76] Li et al. (2020) | √ | √ | √ | ||||||||
[77] Li et al. (2022) | √ | ||||||||||
[78] Liao et al. (2011) | √ | ||||||||||
[79] Lidynia et al. (2018) | √ | ||||||||||
[80] Lu et al. (2020) | √ | √ | |||||||||
[81] Mager et al. (2021) | √ | ||||||||||
[82] Marreiros et al. (2017) | √ | √ | |||||||||
[8] Mathews-Hunt (2016) | √ | √ | √ | ||||||||
[83] McCoy et al. (2017) | √ | ||||||||||
[7] Menard and Bott (2020) | √ | √ | √ | √ | |||||||
[84] Mosafer et al., 2021 | √ | √ | √ | ||||||||
[85] Moshki and Barki (2014) | √ | √ | |||||||||
[86] Mousavi et al. (2022) | √ | ||||||||||
[87] Mullins et al. (2022) | √ | ||||||||||
[88] Mutimukwe et al. (2020) | √ | √ | √ | ||||||||
[89] Nikkhah and Grover (2022) | √ | √ | |||||||||
[90] Nikkhah and Sabherwal (2017) | √ | √ | √ | ||||||||
[91] Niknejad et al. (2020) | √ | √ | √ | ||||||||
[92] Nyshadham and Castano (2012) | √ | √ | |||||||||
[9] Palos-Sanchez et al. (2019) | √ | √ | |||||||||
[93] Park (2011) | √ | ||||||||||
[94] Park (2015) | √ | ||||||||||
[95] Paspatis et al. (2020) | √ | √ | |||||||||
[96] Pilton et al. (2021) | √ | ||||||||||
[97] Quayyum et al. (2021) | √ | √ | √ | ||||||||
[98] Rangedda et al. (2022) | √ | ||||||||||
[99] Reith et al. (2019) | √ | √ | √ | ||||||||
[100] Reith et al. (2021) | √ | √ | |||||||||
[101] Renaud and Zimmermann (2018) | √ | √ | |||||||||
[102] Reynolds et al. (2011) | √ | √ | |||||||||
[103] Risius et al. (2020) | √ | √ | |||||||||
[104] Schomakers et al. (2019) | √ | √ | √ | √ | |||||||
[105] Schreiber et al. (2013) | √ | √ | √ | ||||||||
[106] Schreiner and Hess (2015) | √ | √ | √ | √ | |||||||
[107] Segura et al. (2018) | √ | ||||||||||
[108] Senarath and Arachchilage (2018) | √ | √ | √ | √ | |||||||
[6] Shane-Simpson et al. (2018) | √ | √ | |||||||||
[109] Sharma and Crossler (2014) | √ | √ | √ | √ | |||||||
[110] Spiekermann et al. (2012) | √ | √ | |||||||||
[111] Sschwaig et al. (2013) | √ | ||||||||||
[112] Strycharz et al. (2021) | √ | ||||||||||
[113] Stutzman et al. (2011) | √ | √ | |||||||||
[114] Taddicken (2014) | √ | ||||||||||
[115] Terlizzi et al. (2019) | √ | √ | √ | ||||||||
[116] Tsai et al. (2011) | √ | √ | |||||||||
[117] Tsai and Kelley (2014) | √ | √ | |||||||||
[118] Tse et al. (2014) | √ | ||||||||||
[119] van Zoonen (2016) | √ | √ | √ | √ | √ | ||||||
[120] Venkatesh et al. (2012) | √ | ||||||||||
[121] Viswanath et al. (2020) | √ | √ | √ | ||||||||
[122] Wall and Warkentin (2019) | √ | √ | |||||||||
[123] Wang et al. (2021) | √ | ||||||||||
[124] Wiegard and Breitner (2017) | √ | ||||||||||
[125] Wieneke et al. (2016) | √ | ||||||||||
[126] Wilson and Valacich (2012) | √ | √ | |||||||||
[127] Wilson et al. (2015) | √ | √ | |||||||||
[128] Wisniewski et al. (2017) | √ | √ | |||||||||
[129] Wu and Li (2019) | √ | ||||||||||
[130] Xu et al. (2010) | √ | √ | √ | √ | |||||||
[131] Zhang et al. (2020) | √ | √ | √ | ||||||||
[132] Zareef and Gurvirender (2015) | √ | ||||||||||
[133] Zalmanson et al. (2022) | √ | √ | |||||||||
Number of references per factor | 23 | 30 | 34 | 16 | 74 | 45 | 3 | 8 | 14 | 8 | 22 |
Factor | Strong Influence | Frequency of Appearance in Literature | Positive Influence | Negative Influence |
---|---|---|---|---|
Financial/Non-Financial Exchanges/Benefits/Usefulness | √ | √ | √ | √ |
Privacy Risk Perception | √ | √ | √ | √ |
Trust/Control/Confidence/Fear | √ | √ | ||
Privacy Concerns | √ | √ | √ | |
Needs/necessity/Psychological Engagement | √ | √ | ||
Sensitivity of information | √ | |||
Privacy Awareness | √ | √ | √ | √ |
Time Lapse | √ | |||
Level of Education/Visualization/ Interaction/Experience | √ | √ | √ | √ |
Demographics | √ | √ | √ | √ |
Dimensionality/Complexity | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paspatis, I.; Tsohou, A.; Kokolakis, S. How Is Privacy Behavior Formulated? A Review of Current Research and Synthesis of Information Privacy Behavioral Factors. Multimodal Technol. Interact. 2023, 7, 76. https://doi.org/10.3390/mti7080076
Paspatis I, Tsohou A, Kokolakis S. How Is Privacy Behavior Formulated? A Review of Current Research and Synthesis of Information Privacy Behavioral Factors. Multimodal Technologies and Interaction. 2023; 7(8):76. https://doi.org/10.3390/mti7080076
Chicago/Turabian StylePaspatis, Ioannis, Aggeliki Tsohou, and Spyros Kokolakis. 2023. "How Is Privacy Behavior Formulated? A Review of Current Research and Synthesis of Information Privacy Behavioral Factors" Multimodal Technologies and Interaction 7, no. 8: 76. https://doi.org/10.3390/mti7080076