Effect of Depressants and Temperature on Bastnaesite and Monazite Flotation Separation from a Canadian Rare Earth Element (REE) Ore
<p>Elemental recovery as a function of flotation time for test 4.</p> "> Figure 2
<p>Mineral recovery as a function of time for tests 1, 7, and 10 (central point).</p> "> Figure 3
<p>Mineral recovery as a function of time for experiment 4 (75 °C, 2400 g/t Na<sub>2</sub>SiO<sub>3</sub>, 0 g/t guar gum). (<b>a</b>) Overall; (<b>b</b>) Close-up on gangue minerals.</p> "> Figure 4
<p>Grade-recovery curve for central points.</p> "> Figure 5
<p>Grade-recovery curves for selected flotation tests.</p> "> Figure 6
<p>Measured (points) and modelled (lines) for test 7 (central point).</p> "> Figure 7
<p>Monazite ultimate recovery <span class="html-italic">R</span><sub>∞</sub>,<sub>monaz.</sub> as a function of gangue recovery <span class="html-italic">R</span><sub>g,32.</sub></p> "> Figure 8
<p>Process proposed for REE flotation concentrates.</p> "> Figure 9
<p>Calculated costs, revenues and profits (dashed) of hydrometallurgical processing as a function of REE recovery.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Grinding
2.2. Froth Flotation
- The initial composition of ankerite was taken from the Mineral Data website (http://webmineral.com/);
3. Results
3.1. Calculated Composition of the Flotation Test Feed
3.2. Time-Recovery and Grade-Recovery Curves
3.3. Modelling of the Kinetic Curves for the REE Minerals and Analysis of the Factorial Design
- is the weight-averaged recovery of gangue minerals after 32 min of flotation.
- G75 quantifies the combined REE mineral grade (bastnaesite + monazite) obtained at 75% REE recovery.
- S (for Separation efficiency) is the difference between valuable mineral and gangue recovery, which is calculated using Equation (3):
4. Economic Efficiency Analysis
- An available REE revenue of 290 US$/t of ore is estimated from current REE prices: [34] and http://www.cre.net/Encre/Prices.asp;
- Refining (REE separation) charges applied are 30% of REE value contained in the mixed oxalate product;
- A 90% hydrometallurgical REE processing recovery is achieved;
- Gangue in the concentrate is made up entirely of dolomite, ankerite, and calcite in the same relative proportions as the feed;
- Stoichiometric usage of HCl, NaOH, and oxalic acid for operation of the Figure 8 process;
- These reagents, along with the heating energy for the caustic treatment, represent the bulk of the operating costs;
- Reagent and energy unit costs are as follows: 156 US$/t of HCl, 680 US$/t of NaOH (January 2019 prices quoted by a large supplier), 300 $/t of oxalic acid and 0.05 US$/kWh.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Habashi, F. Extractive metallurgy of rare earths. Can. Metall. Q. 2013, 52, 224–233. [Google Scholar] [CrossRef]
- Krishnamurthy, N.; Gupta, C.K. Extractive Metallurgy of Rare Earths, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Zhang, J.; Edwards, C. A Review of Rare Earth Mineral Processing Technology. In Proceedings of the 44th Annual Canadian Mineral Processors Operators Conference, Ottawa, ON, Canada, 17–19 January 2012; pp. 79–102. [Google Scholar]
- Grammatikopoulos, T.; Halliday, M.; Mohns, C.; Mina, C.; Downing, S. An Investigation into Resources, Mineralogical Charactristic and Associated Metallurgical Data for Advanced REE Projects in Canada; Natural Resources Canada: Ottawa, ON, Canada, 2016; pp. 1–204.
- Grenier, L.; Tremblay, J.F.; Sirois, R. Technical Report NI 43-101, Updated Mineral Resource Estimate for Rare Earth Elements, 2012, Issued Date March 18, 2013, Amended 19th September 2013; Iamgold Corp.: Toronto, ON, Canada, 2013; pp. 1–166. [Google Scholar]
- Hatch, G.; Lifton, J. TMR Advanced Rare-Earth Projects Index. Available online: http://www.techmetalsresearch.com/metrics-indices/tmr-advanced-rare-earth-projects-index/ (accessed on 5 April 2019).
- Sauber, M.E.; Zinck, J. Update of Canadian Rare Earths Projects and Technology Trends. In Proceedings of the Canadian Mineral Processors (CMP) Conference, Ottawa, ON, Canada, 17–19 January 2017; pp. 374–389. [Google Scholar]
- Pradip; Fuerstenau, D.W. Adsorption of hydroxamate collectors on semisoluble minerals Part II: Effect of temperature on adsorption. Colloids Surf. 1985, 15, 137–146. [Google Scholar] [CrossRef]
- Li, M.; Gao, K.; Zhang, D.; Duan, H.; Ma, L.; Huang, L. The influence of temperature on rare earth flotation with naphthyl hydroxamic acid. J. Rare Earths 2018, 36, 99–107. [Google Scholar] [CrossRef]
- Wen, Q.G. Use of the QEM∗SEM analysis in flotation testwork on a phosphate ore containing monazite. Int. J. Miner. Process. 1993, 37, 89–108. [Google Scholar] [CrossRef]
- Jordens, A.; Zhiyong, Y.; Cappuccitti, F. A New Hydroxamate-Based Flotation Collector for the Flotation or Rare Earth Minerals. In Proceedings of the International Mineral Processing Congress (IMPC), Quebec City, QC, Canada, 11–15 September 2016; pp. 1–12. [Google Scholar]
- Satur, J.V.; Calabia, B.P.; Hoshino, M.; Morita, S.; Seo, Y.; Kon, Y.; Takagi, T.; Watanabe, Y.; Mutele, L.; Foya, S. Flotation of rare earth minerals from silicate–hematite ore using tall oil fatty acid collector. Miner. Eng. 2016, 89, 52–62. [Google Scholar] [CrossRef]
- Wang, J.; Somasundaran, P.; Nagaraj, D.R. Adsorption mechanism of guar gum at solid–liquid interfaces. Miner. Eng. 2005, 18, 77–81. [Google Scholar] [CrossRef]
- Nanthakumar, B.; Grimm, D.; Pawlik, M. Anionic flotation of high-iron phosphate ores—Control of process water chemistry and depression of iron minerals by starch and guar gum. Int. J. Miner. Process. 2009, 92, 49–57. [Google Scholar] [CrossRef]
- Negeri, T.; Boisclair, M. Flotation-Magnetic Separation Hybrid Process for Concentration of Rare Earth Minerals Contained in a Carbonatite Ore. In Proceedings of the International Mineral Processing Congress 2016-Rare Earths Symposium, Quebec City, QC, Canada, 11–15 September 2016; pp. 1–14. [Google Scholar]
- Boulanger, J.-F.; Bazin, C.; Turgeon, K. Literature Review of the Concentration of Rare Earth Elements (REE) through Flotation Processes. In Technical Report and Presentation for CanMET Mining; Natural Resources Canada: Ottawa, ON, Canada, 2016; pp. 1–68. Available online: http://reechromite.ca/en/rare-earth-elements/publications/ (accessed on 5 April 2019).
- Gy, P.M. Sampling of Particulate Materials: Theory and Practice; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Shenyang Florrea Chemicals Co., Ltd. Florrea Reagents (Brochure 2018); Shenyang Florrea Chemicals: Shenyang, China, 2018. [Google Scholar]
- Hodouin, D.; Everell, M.D. A hierarchical procedure for adjustment and material balancing of mineral processes data. Int. J. Miner. Process. 1980, 7, 91–116. [Google Scholar] [CrossRef]
- Whiten, B. Calculation of Mineral Composition from Chemical Assays. Miner. Process. Extr. Metall. Rev. 2007, 29, 83–97. [Google Scholar] [CrossRef]
- Krishnamurthy, N.; Gupta, C.K. Extractive Metallurgy of Rare Earths; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Jordens, A.; Cheng, Y.P.; Waters, K.E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 2013, 41, 97–114. [Google Scholar] [CrossRef]
- Zhang, W.; Honaker, R.Q.; Groppo, J.G. Flotation of monazite in the presence of calcite part I: Calcium ion effects on the adsorption of hydroxamic acid. Miner. Eng. 2017, 100, 40–48. [Google Scholar] [CrossRef]
- Pradip; Fuerstenau, D.W. The adsorption of hydroxamate on semi-soluble minerals. Part I: Adsorption on barite, Calcite and Bastnaesite. Colloids Surf. 1983, 8, 103–119. [Google Scholar] [CrossRef]
- Zuñiga, H.G. The efficiency obtained by flotation is an exponential function of time. Bol. Min. Soc. Nac. Min. 1935, 47, 83–86. [Google Scholar]
- Dunne, R.C.; Kawatra, S.K.; Young, C.A. SME Mineral Processing and Extractive Metallurgy Handbook; Society for Mining, Metallurgy, and Exploration, Inc.: Littleton, CO, USA, 2019. [Google Scholar]
- Hines, W.W.; Montgomery, D.C.; Goldsman, D.M.; Borror, C.M. Probability and Statistics in Engineering; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Jordens, A.; Marion, C.; Kuzmina, O.; Waters, K.E. Surface chemistry considerations in the flotation of bastnäsite. Miner. Eng. 2014, 66–68, 119–129. [Google Scholar] [CrossRef]
- Ren, J.; Lu, S.; Song, S.; Niu, J. A new collector for rare earth mineral flotation. Miner. Eng. 1997, 10, 1395–1404. [Google Scholar] [CrossRef]
- Qi, D. Hydrometallurgy of Rare Earths: Extraction and Separation; Elsevier Science: Amsterdam, The Netherlands, 2018; p. 804. [Google Scholar]
- Verbaan, N.; Bradley, K.; Brown, J.; Mackie, S. A review of hydrometallurgical flowsheets considered in current REE projects. In Proceedings of the Symposium on critical and strategic materials, Victoria, BC, Canada, 13–14 November 2015; pp. 147–162. [Google Scholar]
- Dutrizac, J.E. The behaviour of the rare earth elements during gypsum precipitation. Hydrometallurgy 2017, 174, 38–46. [Google Scholar] [CrossRef]
- Bohlmann, E.G.; Calkins, G.D. Processing of Monazite Sand. U.S. Patent 2,815,264, 3 December 1957. [Google Scholar]
- Gambogi, J. Mineral Commodity Summaries 2018-Rare Earths; United States Geological Survey: Reston, VA, USA, 2019.
Group | Mineral | Formula | Weight % |
---|---|---|---|
REE minerals | Bastnaesite/Synchysite | CeFCO3/CaCeF(CO3)2 | 1.96 |
Monazite | CePO4 | 1.43 | |
Allanite | (Ce,Ca)2(Al,Fe3+)3(SiO4)3(OH) | 0.13 | |
Oxides | Iron oxides | Fe2O3/Fe3O4 | 5.85 |
Silicates | Quartz | SiO2 | 0.92 |
Mica/Clay | KAl2(Si3Al)O10(OH,F)2 | 1.15 | |
Amphibole | (Fe,Mg,Ca)SiO3 | 0.75 | |
Chlorite | (Mg,Al,Fe)12[(Si,Al)8O20]OH16 | 4.43 | |
Carbonates | Dolomite | CaMg(CO3)2 | 50.00 |
Calcite | CaCO3 | 13.20 | |
Ankerite | Ca[Mg,Fe](CO3)2 | 13.70 | |
Siderite | FeCO3 | 0.21 | |
Sulfides | Pyrite | FeS2 | 2.87 |
Phosphates | Apatite | (F,Cl,OH)Ca5(PO4)3 | 0.28 |
Sulfates | Baryte | BaSO4 | 1.99 |
Others | 1.13 | ||
Total | 100 |
Step | Duration (min.) |
---|---|
Ground solid addition and stabilization | 5 |
Depressant addition | 5 |
Collector addition 1 (1200 g/t) | 5 |
Roughing 1 | 4 |
Collector addition 2 (150 g/t) | 3 |
Roughing 2 | 4 |
Collector addition 3 (150 g/t) | 3 |
Roughing 3 | 4 |
Collector addition 4 (150 g/t) | 3 |
Roughing 4 | 8 |
Collector addition 5 (150 g/t) | 3 |
Roughing 5 | 12 |
Total | 59 |
Mineral | Wt % | Source | Elemental Weight Fraction (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mg | Al | Si | Ca | Mn | Fe | La | Ce | Nd | Th | P | |||
Bastnaesite | 1.96 | EMPA | 5.8 | 2.4 | 11.5 | 22.7 | 9.5 | 1.0 | |||||
Monazite | 1.43 | EMPA | 0.3 | 11.5 | 22.7 | 9.5 | 3.1 | 11.4 | |||||
Fe-oxides | 5.85 | Database | 0.0 | 69.2 | |||||||||
Fe-Chlorite | 4.43 | Database | 0.0 | 10.6 | 11.6 | 0.0 | |||||||
Dolomite | 50 | Database | 13.2 | 21.7 | 3.3 | ||||||||
Calcite | 13.2 | Database | 40.0 | ||||||||||
Ankerite | 13.7 | Database | 0.0 | 14.9 | 9.2 | 24.8 | |||||||
Feed (calculated % w/w) | 6.6 | 0.5 | 0.5 | 18.3 | 1.3 | 9.1 | 0.4 | 0.8 | 0.3 | 0.1 | 0.2 | ||
Feed (measured % w/w) | 6.6 | 0.5 | 1.0 | 18.3 | 1.3 | 10.4 | 0.4 | 0.7 | 0.3 | 0.1 | 0.2 | ||
Difference (% relative) | 0.3 | 0.8 | -5.7 | 0.8 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 10.0 | 7.1 |
Test | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | 50 | 75 | 75 | 75 | 75 | 25 | 50 | 25 | 25 | 50 | 25 |
Sodium Silicate dosage (g/t) | 1200 | 0 | 0 | 2400 | 2400 | 0 | 1200 | 0 | 2400 | 1200 | 2400 |
Guar gum dosage (g/t) | 200 | 0 | 400 | 0 | 400 | 0 | 200 | 400 | 0 | 200 | 400 |
Test | Mg | Al | Si | P | Ca | Ti | Mn | Fe | Y | La | Ce | Nd | Th |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 6.65 | 0.45 | 0.99 | 0.23 | 18.4 | 0.10 | 1.27 | 10.5 | 0.009 | 0.35 | 0.71 | 0.28 | 0.057 |
2 | 6.57 | 0.45 | 0.98 | 0.23 | 18.4 | 0.10 | 1.28 | 10.5 | 0.008 | 0.36 | 0.72 | 0.29 | 0.056 |
3 | 6.90 | 0.45 | 1.00 | 0.27 | 18.4 | 0.10 | 1.27 | 10.5 | 0.008 | 0.36 | 0.73 | 0.26 | 0.059 |
4 | 6.47 | 0.45 | 0.99 | 0.25 | 18.4 | 0.11 | 1.28 | 10.6 | 0.008 | 0.36 | 0.74 | 0.29 | 0.058 |
5 | 5.99 | 0.38 | 0.94 | 0.16 | 17.4 | 0.10 | 1.21 | 10.1 | 0.009 | 0.35 | 0.71 | 0.26 | 0.058 |
6 | 6.76 | 0.48 | 0.99 | 0.24 | 18.0 | 0.09 | 1.24 | 10.2 | 0.008 | 0.32 | 0.66 | 0.27 | 0.049 |
7 | 6.86 | 0.50 | 0.99 | 0.20 | 18.4 | 0.10 | 1.27 | 10.5 | 0.009 | 0.35 | 0.72 | 0.27 | 0.058 |
8 | 6.72 | 0.53 | 1.02 | 0.25 | 18.3 | 0.10 | 1.27 | 10.5 | 0.009 | 0.34 | 0.71 | 0.26 | 0.054 |
9 | 6.04 | 0.45 | 1.02 | 0.23 | 18.4 | 0.10 | 1.28 | 10.5 | 0.008 | 0.36 | 0.74 | 0.26 | 0.058 |
10 | 6.68 | 0.52 | 1.02 | 0.25 | 18.3 | 0.10 | 1.28 | 10.5 | 0.009 | 0.36 | 0.74 | 0.27 | 0.059 |
11 | 6.63 | 0.46 | 1.02 | 0.28 | 18.3 | 0.10 | 1.27 | 10.5 | 0.009 | 0.35 | 0.72 | 0.27 | 0.056 |
Mean | 6.57 | 0.47 | 1.00 | 0.24 | 18.3 | 0.10 | 1.27 | 10.4 | 0.008 | 0.35 | 0.72 | 0.27 | 0.057 |
Rel. std. dev.* | 5% | 9% | 3% | 15% | 2% | 5% | 2% | 1% | 7% | 3% | 3% | 4% | 5% |
Test | Dolomite | Chlorite | Calcite | Fe-oxides | Ankerite | Bastnaesite | Monazite | Σ |
---|---|---|---|---|---|---|---|---|
1 | 50.4 | 4.29 | 13.2 | 5.95 | 13.8 | 1.69 | 1.35 | 90.7 |
2 | 49.9 | 4.22 | 13.6 | 5.96 | 13.8 | 1.87 | 1.24 | 90.6 |
3 | 52.4 | 4.26 | 12.2 | 5.82 | 13.8 | 1.82 | 1.25 | 91.5 |
4 | 49.1 | 4.24 | 13.9 | 6.03 | 13.9 | 1.93 | 1.31 | 90.4 |
5 | 45.4 | 3.63 | 13.6 | 6.12 | 13.1 | 1.74 | 1.30 | 84.9 |
6 | 51.3 | 4.52 | 11.9 | 5.47 | 13.4 | 1.76 | 1.08 | 89.4 |
7 | 52.0 | 4.73 | 12.4 | 5.61 | 13.8 | 1.73 | 1.32 | 91.6 |
8 | 51.0 | 4.98 | 12.7 | 5.60 | 13.8 | 1.84 | 1.16 | 91.0 |
9 | 45.9 | 4.23 | 15.7 | 6.20 | 13.9 | 1.92 | 1.21 | 88.9 |
10 | 50.7 | 4.90 | 12.9 | 5.67 | 13.8 | 1.83 | 1.30 | 91.1 |
11 | 50.3 | 4.36 | 13.2 | 5.90 | 13.7 | 1.84 | 1.23 | 90.5 |
Mean | 49.8 | 4.40 | 13.2 | 5.85 | 13.7 | 1.82 | 1.25 | 90.1 |
QEMScan | 50.0 | 4.43 | 13.2 | 5.85 | 13.7 | 1.96 | 1.43 | 90.6 |
Test | Temp. | Na2SiO3 | Guar gum | pH | R∞,bast. | kbast. | R∞,monaz. | kmonaz. | Rg,32 | G75 | S |
---|---|---|---|---|---|---|---|---|---|---|---|
(°C) | (g/t) | (g/t) | (%) | (min−1) | (%) | (min−1) | (%) | (%) | (%) | ||
1 | 50 | 1200 | 200 | 9.1 | 96.2 | 0.19 | 77.8 | 0.05 | 24.5 | 13.0 | 56 |
2 | 75 | 0 | 0 | 8.3 | 87.1 | 0.11 | 63.8 | 0.06 | 13.7 | 12.5 | 60 |
3 | 75 | 0 | 400 | 8.1 | 96.5 | 0.23 | 75.8 | 0.10 | 24.2 | 18.9 | 62 |
4 | 75 | 2400 | 0 | 9.2 | 100.0 | 0.22 | 52.5 | 0.09 | 6.8 | 30.6 | 73 |
5 | 75 | 2400 | 400 | 9.2 | 100.0 | 0.22 | 70.6 | 0.08 | 17.1 | 15.4 | 66 |
6 | 25 | 0 | 0 | 8.9 | 96.4 | 0.11 | 70.4 | 0.05 | 34.7 | 7.4 | 44 |
7 | 50 | 1200 | 200 | 9.1 | 94.5 | 0.26 | 78.1 | 0.08 | 34.2 | 13.1 | 52 |
8 | 25 | 0 | 400 | 8.8 | 93.7 | 0.11 | 92.9 | 0.06 | 67.8 | 6.9 | 18 |
9 | 25 | 2400 | 0 | 10.2 | 100.0 | 0.14 | 61.3 | 0.06 | 11.1 | 20.6 | 71 |
10 | 50 | 1200 | 200 | 9.1 | 94.0 | 0.21 | 86.4 | 0.06 | 32.2 | 14.7 | 54 |
11 | 25 | 2400 | 400 | 10.3 | 98.9 | 0.10 | 61.3 | 0.08 | 19.4 | 11.3 | 59 |
Central point (1, 7, and 10) average and standard deviation | 94.9 ± 1.1 | 0.22 ± 0.03 | 80.7 ± 4.8 | 0.06 ± 0.01 | 30.2 ± 5.1 | 13.5 ± 0.9 | 53.6 ± 2.1 |
Factor | Effect On | ||||||
---|---|---|---|---|---|---|---|
R∞,bast. | kbast. | R∞,monaz. | kmonaz. | Rg,32 | G75 | S | |
(%) | (min−1) | (%) | (min−1) | (%) | (%) | (%) | |
Temp. (°C) | −0.7 | 0.040 | −2.9 | 0.011 | −8.9 | 3.9 | 8.7 |
Na2SiO3 (g/t) | 3.2 | 0.014 | −7.2 | 0.006 | −10.7 | 4.0 | 10.5 |
Guar gum (g/t) | 0.7 | 0.010 | 6.6 | 0.006 | 7.8 | −2.3 | −5.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boulanger, J.-F.; Bazin, C.; Turgeon, K. Effect of Depressants and Temperature on Bastnaesite and Monazite Flotation Separation from a Canadian Rare Earth Element (REE) Ore. Minerals 2019, 9, 225. https://doi.org/10.3390/min9040225
Boulanger J-F, Bazin C, Turgeon K. Effect of Depressants and Temperature on Bastnaesite and Monazite Flotation Separation from a Canadian Rare Earth Element (REE) Ore. Minerals. 2019; 9(4):225. https://doi.org/10.3390/min9040225
Chicago/Turabian StyleBoulanger, Jean-Francois, Claude Bazin, and Keven Turgeon. 2019. "Effect of Depressants and Temperature on Bastnaesite and Monazite Flotation Separation from a Canadian Rare Earth Element (REE) Ore" Minerals 9, no. 4: 225. https://doi.org/10.3390/min9040225