Single Crystal Growth of Synthetic Sulfide- and Phosphide-Based Minerals for Physical Measurements
<p>Binary phase diagram of (<b>a</b>) Bi-S (ASM diagram #981133) [<a href="#B22-minerals-13-00429" class="html-bibr">22</a>] and (<b>b</b>) Pb-rich side of Pb-S (ASM diagram #101195) [<a href="#B23-minerals-13-00429" class="html-bibr">23</a>]. Note: dotted lines in (<b>a</b>) indicate isobars at (from top) 10<sup>5</sup>, 10<sup>3</sup>, 10, 10<sup>−1</sup> and 10<sup>−3</sup> Pa. The inset in (<b>a</b>) is a picture of Bi<sub>2</sub>S<sub>3</sub> crystals, and the inset in (<b>b</b>) is a picture of PbS crystals. The crystals in each picture are on a mm grid.</p> "> Figure 2
<p>Binary phase diagrams for (<b>a</b>) Rh–S (ASM diagram #980012) [<a href="#B24-minerals-13-00429" class="html-bibr">24</a>], (<b>b</b>), Pd–S (ASM diagram #979991) [<a href="#B25-minerals-13-00429" class="html-bibr">25</a>] and (<b>c</b>) Ni–P (ASM diagram #1201691) [<a href="#B26-minerals-13-00429" class="html-bibr">26</a>]. The insets are pictures of (<b>a</b>) Rh<sub>17</sub>S<sub>15</sub> (miassite), (<b>b</b>) PdS (braggite) and (<b>c</b>) Ni<sub>2</sub>P (allabogdanite) on mm grid paper.</p> "> Figure 3
<p>(<b>a</b>) Pseudo binary cut across the Ag-Sn-S ternary phase diagram (ASM diagram #204086) [<a href="#B40-minerals-13-00429" class="html-bibr">40</a>]. (<b>b</b>) Ternary Ag-Sn-S phase diagram with the ternary cut shown in (<b>a</b>) as a red line, Canfieldite (Ag<sub>8</sub>SnS<sub>6</sub>) shown as a red dot, Ag<sub>2</sub>S shown as a green dot and our starting melt composition shown as a blue dot. In (<b>b</b>), the upper and lower insets are pictures of a canfieldite (Ag<sub>8</sub>SnS<sub>6</sub>) and argyrodite (Ag<sub>8</sub>GeS<sub>6</sub>) crystals on mm grids.</p> ">
Abstract
:1. Introduction
2. Discussion
2.1. Single Crystal Growth from High-Temperature Solutions
2.2. Growth out of Liquids Based on Binary Eutectic Compositions
2.3. Growth of Synthetic Canfieldite (Ag8SnS6) and Argyrodite (Ag8GeS6)
3. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plakida, N. High-Temperature Cuprate Superconductors: Experiment, Theory, and Applications; Springer: Berlin/Heidelberg, Germany, 2010; Volume 166. [Google Scholar]
- Proust, C.; Taillefer, L. The Remarkable Underlying Ground States of Cuprate Superconductors. Annu. Rev. Condens. Matter Phys. 2019, 10, 409–429. [Google Scholar] [CrossRef] [Green Version]
- Stewart, G.R. Superconductivity in iron compounds. Rev. Mod. Phys. 2011, 83, 1589–1652. [Google Scholar] [CrossRef]
- Stewart, G.R. Heavy-fermion systems. Rev. Mod. Phys. 1984, 56, 755–787. [Google Scholar] [CrossRef]
- Si, Q.; Steglich, F. Heavy Fermions and Quantum Phase Transitions. Science 2010, 329, 1161–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canfield, P.C.; Bud’ko, S.L. Preserved entropy and fragile magnetism. Rep. Prog. Phys. 2016, 79, 084506. [Google Scholar] [CrossRef] [Green Version]
- Charrier, B.; Ouladdiaf, B.; Schmitt, D. Observation of Quasimagnetic Structures in Rare-Earth-Based Icosahedral Quasicrystals. Phys. Rev. Lett. 1997, 78, 4637–4640. [Google Scholar] [CrossRef]
- Goldman, A.I.; Kong, T.; Kreyssig, A.; Jesche, A.; Ramazanoglu, M.; Dennis, K.W.; Bud’ko, S.L.; Canfield, P.C. A family of binary magnetic icosahedral quasicrystals based on rare earths and cadmium. Nat. Mater. 2013, 12, 714–718. [Google Scholar] [CrossRef]
- Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry. Phys. Rev. Lett. 1984, 53, 1951–1953. [Google Scholar] [CrossRef] [Green Version]
- Fisher, I.R.; Kramer, M.J.; Wiener, T.A.; Islam, Z.; Ross, A.R.; Lograsso, T.A.; Kracher, A.; Goldman, A.I.; Canfield, P.C. On the growth of icosahedral Al–Pd–Mn quasicrystals from the ternary melt. Philos. Mag. B 1999, 79, 1673–1684. [Google Scholar] [CrossRef]
- Givord, D.; Li, H.S.; Moreau, J.M. Magnetic properties and crystal structure of Nd2Fe14B. Solid State Commun. 1984, 50, 497–499. [Google Scholar] [CrossRef]
- Canfield, P.C. Design, discovery and growth of novel materials. Philos. Mag. 2012, 92, 2398–2400. [Google Scholar] [CrossRef]
- Scheel, H.J.; Elwell, D. Crystal Growth from High-Temperaure Solutions; Academic Press Inc.: London, UK, 1975. [Google Scholar]
- Pamplin, B.R. Crystal Growth; Pergamon Press Ltd.: Oxford, UK, 1975. [Google Scholar]
- Kanatzidis, M.G.; Pöttgen, R.; Jeitschko, W. The Metal Flux: A Preparative Tool for the Exploration of Intermetallic Compounds. Angew. Chem. Int. Ed. 2005, 44, 6996–7023. [Google Scholar] [CrossRef] [PubMed]
- Canfield, P.C. New materials physics. Rep. Prog. Phys. 2020, 83, 016501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canfield, P.C.; Kong, T.; Kaluarachchi, U.S.; Jo, N.H. Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples. Philos. Mag. 2016, 96, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Canfield, P.C.; Fisk, Z. Growth of single crystals from metallic fluxes. Philos. Mag. B 1992, 65, 1117–1123. [Google Scholar] [CrossRef]
- Lin, X.; Bud’ko, S.L.; Canfield, P.C. Development of viable solutions for the synthesis of sulfur bearing single crystals. Philos. Mag. 2012, 92, 2436–2447. [Google Scholar] [CrossRef]
- Slade, T.J.; Canfield, P.C. Use of Refractory-Volatile Element Deep Eutectic Regions to Grow Single Crystalline Intermetallic Compounds. Z. Anorg. Allg. Chem. 2022, 648, e202200145. [Google Scholar] [CrossRef]
- Abbott, E.A. Flatland: A Romance of Many Dimensions; Seeley & Co.: London, UK, 1884. [Google Scholar]
- Okamoto, H. Bismuth-sulfur phase diagram. In ASM Alloy Phase Diagrams Database; Villars, H.O.P., Cenzual, K., Eds.; ASM International: Materials Park, OH, USA, 2016. [Google Scholar]
- Okamoto, H. Lead-sulfur phase diagram. In ASM Alloy Phase Diagrams Database; Villars, H.O.P., Cenzual, K., Eds.; ASM International: Materials Park, OH, USA, 2016. [Google Scholar]
- Okamoto, H. Rhodium-sulfur phase diagram. In ASM Alloy Phase Diagrams Database; Villars, H.O.P., Cenzual, K., Eds.; ASM International: Materials Park, OH, USA, 2016. [Google Scholar]
- Okamoto, H. Palladium-sulfur phase diagram. In ASM Alloy Phase Diagrams Database; Villars, H.O.P., Cenzual, K., Eds.; ASM International: Materials Park, OH, USA, 2016. [Google Scholar]
- Okamoto, H. Nickel-phosphorus phase diagram. In ASM Alloy Phase Diagrams Database; Villars, H.O.P., Cenzual, K., Eds.; ASM International: Materials Park, OH, USA, 2016. [Google Scholar]
- Kaluarachchi, U.S.; Lin, Q.; Xie, W.; Taufour, V.; Bud’ko, S.L.; Miller, G.J.; Canfield, P.C. Superconducting properties of Rh9In4S4 single crystals. Phys. Rev. B 2016, 93, 094524. [Google Scholar] [CrossRef] [Green Version]
- Herrera, E.; Benito-Llorens, J.; Kaluarachchi, U.S.; Bud’ko, S.L.; Canfield, P.C.; Guillamón, I.; Suderow, H. Vortex creep at very low temperatures in single crystals of the extreme type-II superconductor Rh9In4S4. Phys. Rev. B 2017, 95, 134505. [Google Scholar] [CrossRef] [Green Version]
- Kaluarachchi, U.S.; Xie, W.; Lin, Q.; Taufour, V.; Bud’ko, S.L.; Miller, G.J.; Canfield, P.C. Superconductivity versus structural phase transition in the closely related Bi2Rh3.5S2 and Bi2Rh3S2. Phys. Rev. B 2015, 91, 174513. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Kitagawa, J.; Takeda, N.; Ishikawa, M. Evidence for Strong Quadrupolar Pair Interactions in Rare-Earth Palladium Bronzes RPd3S4. Phys. Rev. Lett. 1999, 83, 5366–5369. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Kitagawa, J.; Takeda, N.; Ishikawa, M. Quadrupolar pair interactions in RPd3S4 (R=rare earths). Phys. B Condens. Matter 2000, 281–282, 597–599. [Google Scholar] [CrossRef]
- Matsuoka, E.; Usui, D.; Sasaki, Y.; Nakao, H.; Shida, H.; Ohoyama, K.; Onodera, H. Simultaneous Occurrence of an Antiferroquadrupolar and a Ferromagnetic Transitions in Rare-Earth Palladium Bronze CePd3S4. J. Phys. Soc. Jpn. 2008, 77, 114706. [Google Scholar] [CrossRef]
- Kitagawa, J.; Takabatake, T.; Matsuoka, E.; Takahashi, F.; Abe, K.; Ishikawa, M. Heterogeneous Mixed-Valence States in RPd3S4 (R=Eu and Yb) Viewed from Thermopower, Electrical Resistivity and Specific Heat. J. Phys. Soc. Jpn. 2002, 71, 1630–1633. [Google Scholar] [CrossRef]
- Ryan, D.H.; Bud’ko, S.L.; Kuthanazhi, B.; Canfield, P.C. Valence and magnetism in EuPd3S4 and (Y, La)xEu1-xPd3S4. Phys. Rev. B 2023, 107, 014402. [Google Scholar] [CrossRef]
- Slade, T.J.; Mudiyanselage, R.S.D.; Furukawa, N.; Smith, T.R.; Schmidt, J.; Wang, L.-L.; Kang, C.-J.; Wei, K.; Shu, Z.; Kong, T.; et al. Mn(Pt1−xPdx)5P: Isovalent Tuning of Mn Sublattice Magnetic Order. arXiv 2022, arXiv:2211.01818. [Google Scholar] [CrossRef]
- Slade, T.J.; Furukawa, N.; Smith, T.R.; Schmidt, J.; Mudiyanselage, R.S.D.; Wang, L.-L.; Xie, W.; Bud, S.L.; Canfield, P.C. High Temperature Ferromagnetism in Cr1+xPt5−xP. Phys. Rev. B 2023, 7, 024410. [Google Scholar] [CrossRef]
- Shen, X.; Xia, Y.; Yang, C.-C.; Zhang, Z.; Li, S.; Tung, Y.-H.; Benton, A.; Zhang, X.; Lu, X.; Wang, G.; et al. High Thermoelectric Performance in Sulfide-Type Argyrodites Compound Ag8Sn(S1−xSex)6 Enabled by Ultralow Lattice Thermal Conductivity and Extended Cubic Phase Regime. Adv. Funct. Mater. 2020, 30, 2000526. [Google Scholar] [CrossRef]
- Lin, S.; Li, W.; Pei, Y. Thermally insulative thermoelectric argyrodites. Mater. Today 2021, 48, 198–213. [Google Scholar] [CrossRef]
- Slade, T.J.; Gvozdetskyi, V.; Wilde, J.M.; Kreyssig, A.; Gati, E.; Wang, L.-L.; Mudryk, Y.; Ribeiro, R.A.; Pecharsky, V.K.; Zaikina, J.V.; et al. A Low-Temperature Structural Transition in Canfieldite, Ag8SnS6, Single Crystals. Inorg. Chem. 2021, 60, 19345–19355. [Google Scholar] [CrossRef]
- Okamoto, H. Silver-tin-sulfide phase diagram. In ASM Alloy Phase Diagrams Database; Villars, H.O.P., Cenzual, K., Eds.; ASM International: Materials Park, OH, USA, 2016. [Google Scholar]
- Kuhs, W.F.; Nitsche, R.; Scheunemann, K. The argyrodites—A new family of tetrahedrally close-packed structures. Mater. Res. Bull. 1979, 14, 241–248. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canfield, P.C.; Slade, T.J. Single Crystal Growth of Synthetic Sulfide- and Phosphide-Based Minerals for Physical Measurements. Minerals 2023, 13, 429. https://doi.org/10.3390/min13030429
Canfield PC, Slade TJ. Single Crystal Growth of Synthetic Sulfide- and Phosphide-Based Minerals for Physical Measurements. Minerals. 2023; 13(3):429. https://doi.org/10.3390/min13030429
Chicago/Turabian StyleCanfield, Paul C., and Tyler J. Slade. 2023. "Single Crystal Growth of Synthetic Sulfide- and Phosphide-Based Minerals for Physical Measurements" Minerals 13, no. 3: 429. https://doi.org/10.3390/min13030429