Diversity and Colonization Strategies of Endolithic Cyanobacteria in the Cold Mountain Desert of Pamir
<p>Sampling sites and samples representing the studied groups. (<b>i</b>) Sampling site and (<b>iv</b>) granite collected from the Lake Khargush, (<b>ii</b>) Lake Karakul, and (<b>v</b>) sample representing granite from group B, (<b>iii</b>) sampling site situated near Karakul, and (<b>vi</b>) sample of quartzites from group C.</p> "> Figure 2
<p>Endolithic biofilms occurring in granites and quartzites in Eastern Pamir. (Granite) the biofilms representing group A (TAKHG). (Quartzite) the samples representing group C (TAKAW1).</p> "> Figure 3
<p>Structure of endolithic microbial communities at the phylum level based on the V3–V4 hypervariable region of 16S rRNA gene.</p> "> Figure 4
<p>The non-metric multidimensional scaling (NMDS) analysis is based on the structure of microbial communities.</p> "> Figure 5
<p>The V3–V4-based structure of endolithic cyanobacterial communities based on ASVs. The names of ASVs obtained using the phylogenetic placement method are given in brackets.</p> "> Figure 6
<p>Isolates of endolithic cyanobacteria obtained from Pamirian granites and quartzites analyzed using light and epifluorescence microscopes. (<b>A</b>) Sampling sites and granitic rockfrom group A colonized by cyanobacteria (black arrow): (<b>i</b>) <span class="html-italic">Chroococcidiopsis</span>-like cyanobacterium, (<b>ii</b>) and (<b>iii</b>) <span class="html-italic">Microcoleus</span>-like morphotype, (<b>iv</b>) <span class="html-italic">Synechococcus</span>-like cyanobacterium. (<b>B</b>) the sampling sites and the granite from group B colonized by cyanobacteria (black arrow): (<b>v</b>) <span class="html-italic">Gloeocapsa</span>-like cyanobacterium, (<b>vi</b>) and (<b>vii</b>) <span class="html-italic">Chroococcidiopsis</span>-like cyanobacterium. (<b>C</b>) sampling sites and granitic rock from group C colonized by cyanobacteria (black arrow): (<b>viii</b>,<b>x</b>) <span class="html-italic">Chroococcidiopsis</span>-like cyanobacterium and (<b>ix</b>) <span class="html-italic">Aliterella</span>-like cyanobacterium.</p> "> Figure 7
<p>The top view of endolithic biofilms of the broken rocks and cross-sections of studied rock samples. (<b>A</b>) Cyanobacteria-dominated biofilm (TAKAG1 and TAKAG3) with coccoid cyanobacteria forming packets colonized mica (blue arrow) and smaller bacterial cells (green arrow). (<b>B</b>) Cryptoendolithic communities inhabiting quartzites are mainly represented by package-forming coccoid cyanobacteria (blue arrow). (<b>C</b>) Euendolithic community inhabiting Ca-rich layer (Ca), composed of different cyanobacterial morphotypes including coccoid (blue arrows) and filamentous, non-heterocystous cyanobacteria (brown arrows), and diatoms (yellow arrow). (<b>D</b>) Cross-sections of lichen-dominated biofilms (TAKHG, TAKAW1).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Work
- A).
- Granites collected from the slopes situated close to lakes Khargush (southern part of Eastern Pamir), and Rangkul (eastern part of Eastern Pamir): TAKHG and TARG.
- B).
- Granites collected from sampling sites located nearby Lake Karakul (northern part of Eastern Pamir): TAKAG1, TAKAG2, and TAKAG3.
- C).
2.2. Isolation, Cultivation, and Identification of Cyanobacteria
2.3. DNA Extraction, PCR, Sequencing, and Sequences Processing
2.4. Validation of Cyanobacterial ASV
2.5. Scanning Electron Microscopy in Backscattered Electron Mode (SEM-BSE)
2.6. Statistical Analyses and Data Visualization
3. Results
3.1. Morphology of Endolithic Biofilms
3.2. Composition and Community Structure of Endolithic Microbial Communities
3.3. Diversity of Cyanobacteria and Association with Bacterial ASVs from Other Phyla
3.4. Spatial Organization and Colonization Strategies Using SEM-BSE
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Monteiro, M.; Baptista, M.S.; Séneca, J.; Torgo, L.; Lee, C.K.; Cary, S.C.; Magalhães, C. Understanding the response of nitrifying communities to disturbance in the McMurdo Dry Valleys, Antarctica. Microorganisms 2020, 8, 404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pointing, S.B.; Belnap, J. Microbial colonization and controls in dryland systems. Nat. Rev. Genet. 2012, 10, 551–562. [Google Scholar] [CrossRef] [PubMed]
- de los Ríos, A.; Wierzchos, J.; Ascaso, C. The lithic microbial ecosystems of Antarctica’s McMurdo Dry Valleys. Antarct. Sci. 2014, 26, 459–477. [Google Scholar] [CrossRef] [Green Version]
- de los Ríos, A.; Cary, C.; Cowan, D. The spatial structures of hypolithic communities in the Dry Valleys of East Antarctica. Polar Biol. 2014, 37, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Makhalanyane, T.P.; Valverde, A.; Gunnigle, E.; Frossard, A.; Ramond, J.-B.; Cowan, D.A. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 2015, 39, 203–221. [Google Scholar] [CrossRef]
- Khomutovska, N.; Jerzak, M.; Kostrzewska-Szlakowska, I.; Kwiatowski, J.; Suska-Malawska, M.; Syczewski, M.; Jasser, I. Life in extreme habitats: Diversity of endolithic microorganisms from cold desert ecosystems of eastern pamir. Pol. J. Ecol. 2017, 65, 303–319. [Google Scholar] [CrossRef]
- Van Goethem, M.W.; Cowan, D.A. Role of cyanobacteria in the ecology of polar environments. In Springer Polar Sciences; Springer Science and Business Media LLC: Berlin, Germany, 2019; pp. 3–23. [Google Scholar]
- Golubic, I.F.S. The Lithobiontic Ecological Niche, with Special Reference to Microorganisms. J. Sediment. Res. 1981, 51, 475–478. [Google Scholar] [CrossRef]
- Wierzchos, J.; de los Ríos, A.; Ascaso, C. Microorganisms in desert rocks: The edge of life on Earth. Int. Microbiol. 2012, 15, 171–181. [Google Scholar]
- de los Ríos, A.; Wierzchos, J.; Sancho, L.G.; Green, T.G.A.; Ascaso, C. Ecology of endolithic lichens colonizing granite in continental Antarctica. Lichenologist 2005, 37, 383–395. [Google Scholar] [CrossRef] [Green Version]
- Mergelov, N.; Mueller, C.W.; Prater, I.; Shorkunov, I.; Dolgikh, A.; Zazovskaya, E.; Shishkov, V.; Krupskaya, V.; Abrosimov, K.; Cherkinsky, A.; et al. Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Qu, E.B.; Omelon, C.R.; Oren, A.; Meslier, V.; Cowan, D.A.; Maggs-Kölling, G.; DiRuggiero, J. Trophic selective pressures organize the composition of endolithic microbial communities from global deserts. Front. Microbiol. 2019, 10, 2952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couradeau, E.; Roush, D.; Guida, B.S.; Garcia-Pichel, F. Diversity and mineral substrate preference in endolithic microbial communities from marine intertidal outcrops (Isla de Mona, Puerto Rico). Biogeosciences 2017, 14, 311–324. [Google Scholar] [CrossRef] [Green Version]
- Garrido-Benavent, I.; Pérez-Ortega, S.; Durán, J.; Ascaso, C.; Pointing, S.B.; Rodríguez-Cielos, R.; Navarro, F.; de los Ríos, A. Differential colonization and succession of microbial communities in rock and soil substrates on a maritime Antarctic glacier forefield. Front. Microbiol. 2020, 11, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rego, A.; De Sousa, A.G.G.; Santos, J.; Pascoal, F.; Canário, J.; Leão, P.N.; Magalhães, C. Diversity of bacterial biosynthetic genes in maritime Antarctica. Microorganisms 2020, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Wierzchos, J.; Ascaso, C. Life, decay and fossilization of endolithic microorganisms from the Ross Desert, Antarctica: Suggestions for in situ further research. Polar. Biol. 2001, 24, 863–868. [Google Scholar] [CrossRef]
- de los Ríos, A.; Grube, M.; Sancho, L.G.; Ascaso, C. Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol. Ecol. 2007, 59, 386–395. [Google Scholar] [CrossRef] [Green Version]
- Wong, F.K.Y.; Lau, M.; Lacap, D.C.; Aitchison, J.C.; Cowan, D.A.; Pointing, S.B. Endolithic Microbial Colonization of Limestone in a High-altitude Arid Environment. Microb. Ecol. 2009, 59, 689–699. [Google Scholar] [CrossRef]
- Jasser, I.; Kostrzewska-Szlakowska, I.; Kwiatowski, J.; Navruzshoev, D.; Suska-Malawska, M.; Khomutovska, N. Morphological and molecular diversity of benthic cyanobacteria communities versus environmental conditions in shallow, high mountain water bodies in eastern pamir mountains (Tajikistan). Pol. J. Ecol. 2020, 67, 286–304. [Google Scholar] [CrossRef]
- Khomutovska, N.; Sandzewicz, M.; Łach, Ł.; Suska-Malawska, M.; Chmielewska, M.; Mazur-Marzec, H.; Cegłowska, M.; Niyatbekov, T.; Wood, S.A.; Puddick, J.; et al. limited microcystin, anatoxin and cylindrospermopsin production by cyanobacteria from microbial mats in cold deserts. Toxins 2020, 12, 244. [Google Scholar] [CrossRef] [Green Version]
- Kleinteich, J.; Puddick, J.; Wood, S.A.; Hildebrand, F.; Laughinghouse, H.D.; Pearce, D.A.; Dietrich, D.; Wilmotte, A. Toxic cyanobacteria in svalbard: Chemical diversity of microcystins detected using a liquid chromatography mass spectrometry precursor ion screening method. Toxins 2018, 10, 147. [Google Scholar] [CrossRef] [Green Version]
- Cowan, D.A.; Khan, N.; Pointing, S.B.; Cary, S.C. Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarct. Sci. 2010, 22, 714–720. [Google Scholar] [CrossRef]
- Cowan, D.A.; Makhalanyane, T.P.; Dennis, P.G.; Hopkins, D.W. Microbial ecology and biogeochemistry of continental Antarctic soils. Front. Microbiol. 2014, 5, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mętrak, M.; Sulwinski, M.; Chachulski, L.; Wilk, M.B.; Suskamalawska, M. Creeping environmental problems in the pamir mountains: Landscape conditions, climate change, wise use and threats. In Climate Change Impacts on High-Altitude Ecosystems; Springer Science and Business Media LLC: Berlin, Germany, 2015; pp. 665–694. [Google Scholar]
- Vanselow, K.A. The high-mountain pastures of the Eastern Pamirs (Tajikistan)—An evaluation of the ecological basis and the pasture potential. Ph.D. Thesis, The Faculty of Sciences Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen and Nuremberg, Bavaria, Germany, 2011. Available online: http://d-nb.info/1010705040/ (accessed on 20 April 2020).
- Guillard, R.L.; Lorenzen, C.J. Yellow-green algae with chlorophyllide. J. Phycol. 1972, 8, 10–14. [Google Scholar] [CrossRef]
- Rippka, R.; Stanier, R.Y.; Deruelles, J.; Herdman, M.; Waterbury, J.B. Generic Assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 1979, 111, 1–61. [Google Scholar] [CrossRef] [Green Version]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2012, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Bokulich, N.A.; Kaehler, B.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Caporaso, J.G. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 1–17. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Roush, D.; Giraldo-Silva, A.; Fernandes, V.M.C.; Maria Machado de Lima, N.; McClintock, S.; Velasco Ayuso, S.; Klicki, K.; Dirks, B.; Arantes Gama, W.; Sorochkina, K.; et al. Cydrasil: A Comprehensive Phylogenetic Tree of Cyanobacterial 16s rRNA Gene Sequences. Available online: https://github.com/FGPLab/cydrasil (accessed on 21 May 2020).
- Berger, S.A.; Stamatakis, A. Aligning short reads to reference alignments and trees. Bioinformatics 2011, 27, 2068–2075. [Google Scholar] [CrossRef] [Green Version]
- Berger, S.A.; Krompass, D.; Stamatakis, A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst. Biol. 2011, 60, 291–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wierzchos, J.; Ascaso, C. Application of back-scattered electron imaging to the study of the lichen-rock interface. J. Microsc. 1994, 175, 54–59. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: http://www.R-project.org/ (accessed on 15 June 2020).
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016, 44, W242–W245. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R package Version 2.4-3. 2017. Available online: https://CRAN.R-project.org/package=vegan (accessed on 4 July 2020).
- Cuzman, O.A.; Tiano, P.; Ventura, S.; Frediani, P. Biodiversity on Stone Artifacts. In The Importance of Biological Interactions in the Study of Biodiversity; InTech: Rijeka, Croazia, 2011; pp. 367–390. [Google Scholar]
- de La Torre, J.R.; Goebel, B.M.; Friedmann, E.I.; Pace, N.R. Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 2003, 69, 3858–3867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de los Ríos, A.; Sancho, L.G.; Grube, M.; Wierzchos, J.; Ascaso, C. Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytol. 2005, 165, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Crits-Christoph, A.; Robinson, C.K.; Ma, B.; Ravel, J.; Wierzchos, J.; Ascaso, C.; Artieda, O.; Souza-Egipsy, V.; Casero, M.C.; DiRuggiero, J. Phylogenetic and functional substrate specificity for endolithic microbial communities in hyper-arid environments. Front. Microbiol. 2016, 7, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wierzchos, J.; DiRuggiero, J.; Vítek, P.; Artieda, O.; Souza-Egipsy, V.; Škaloud, P.; Tisza, M.; Davila, A.F.; Vílchez, C.; Garbayo, I.; et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 2015, 6, 934. [Google Scholar] [CrossRef] [Green Version]
- Bukin, Y.S.; Galachyants, Y.P.; Morozov, I.V.; Bukin, S.V.; Zakharenko, A.S.; Zemskaya, T.I. Data Descriptor: The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci. Data 2019, 6, 190007. [Google Scholar] [CrossRef] [Green Version]
- Meslier, V.; Casero, M.C.; Dailey, M.; Wierzchos, J.; Ascaso, C.; Artieda, O.; McCullough, P.R.; DiRuggiero, J. Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environ. Microbiol. 2018, 20, 1765–1781. [Google Scholar] [CrossRef] [Green Version]
- Erlacher, A.; Cernava, T.; Cardinale, M.; Soh, J.; Sensen, C.W.; Grube, M.; Berg, G. Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L. Front. Microbiol. 2015, 6, 53. [Google Scholar] [CrossRef]
- Alneberg, J.; Karlsson, C.M.G.; Divne, A.-M.; Bergin, C.; Homa, F.; Lindh, M.V.; Hugerth, L.W.; Ettema, T.J.G.; Bertilsson, S.; Andersson, A.F.; et al. Genomes from uncultivated prokaryotes: A comparison of metagenome-assembled and single-amplified genomes. Microbiome 2018, 6, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample ID | Sample Group | Localization | Rock Type | Shannon 1 | Observed ASVs | Pielou 2 | PD 3 |
---|---|---|---|---|---|---|---|
TAKHG | A | Khargush | granite | 7.50 | 304 | 0.91 | 40.29 |
TARG | A | Rangkul | granite | 4.25 | 49 | 0.76 | 11.49 |
TAKAG1 | B | Karakul | granite | 7.41 | 238 | 0.94 | 30.66 |
TAKAG2 | B | Karakul | granite | 5.52 | 82 | 0.87 | 15.49 |
TAKAG3 | B | Karakul | granite | 7.15 | 205 | 0.93 | 30.11 |
TAKAW1 | C | Karakul | quartzite | 7.75 | 269 | 0.96 | 33.12 |
TAKAW2 | C | Karakul | quartzite | 5.22 | 57 | 0.9 | 11.39 |
TAKAW3 | C | Karakul | quartzite | 6.00 | 95 | 0.91 | 17.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khomutovska, N.; de los Ríos, A.; Jasser, I. Diversity and Colonization Strategies of Endolithic Cyanobacteria in the Cold Mountain Desert of Pamir. Microorganisms 2021, 9, 6. https://doi.org/10.3390/microorganisms9010006
Khomutovska N, de los Ríos A, Jasser I. Diversity and Colonization Strategies of Endolithic Cyanobacteria in the Cold Mountain Desert of Pamir. Microorganisms. 2021; 9(1):6. https://doi.org/10.3390/microorganisms9010006
Chicago/Turabian StyleKhomutovska, Nataliia, Asunción de los Ríos, and Iwona Jasser. 2021. "Diversity and Colonization Strategies of Endolithic Cyanobacteria in the Cold Mountain Desert of Pamir" Microorganisms 9, no. 1: 6. https://doi.org/10.3390/microorganisms9010006
APA StyleKhomutovska, N., de los Ríos, A., & Jasser, I. (2021). Diversity and Colonization Strategies of Endolithic Cyanobacteria in the Cold Mountain Desert of Pamir. Microorganisms, 9(1), 6. https://doi.org/10.3390/microorganisms9010006