Cylindrical Resonator Utilizing a Curved Resonant Grating as a Cavity Wall
<p>Schematic view of part of a flat/curved resonant grating and a circular cavity. (<b>a</b>) Conventional thin-film grating with a sinusoidal profile on a flat substrate; (<b>b</b>) Curved structure; (<b>c</b>) Cylindrical cavity with a curved grating wall.</p> "> Figure 2
<p>Detail of the sample structures. (<b>a</b>) Curved resonant grating (proposed structure). <span class="html-italic">ρ</span><sub>0</sub>, 2<span class="html-italic">a</span> and <span class="html-italic">d</span><sub>0</sub> are the average radial position, depth and base thickness of the grating, respectively. The region surrounded by a solid line indicates the computational domain for FDTD. PBC and RBC stand for <span class="underline">P</span>eriodic and <span class="underline">R</span>adiation <span class="underline">B</span>oundary <span class="underline">C</span>onditions, respectively; (<b>b</b>) Reference curved slab structure. The grating region is replaced by an average refractive index layer.</p> "> Figure 3
<p>Reflection spectra viewed from inside the curved grating. “<span class="html-italic">m</span>” is the number of gratings on the outer edge of the cavity wall. The broken line shows the spectrum of the average index structure of <a href="#micromachines-03-00101-f002" class="html-fig">Figure 2</a>(b) for <span class="html-italic">m</span> = 50.</p> "> Figure 4
<p>Relationships between the curvature of the grating, GMR wavelength and 1-dB bandwidth.</p> "> Figure 5
<p>Example of a calculated field intensity profile upon reflection (solid line) and its extrapolated curve (dotted line), for the <span class="html-italic">m</span> = 50 structure. The latter is a linear summation of <span class="html-fig-inline" id="micromachines-03-00101-i020"> <img alt="Micromachines 03 00101 i020" src="/micromachines/micromachines-03-00101/article_deploy/html/images/micromachines-03-00101-i020.png"/></span> and <span class="html-fig-inline" id="micromachines-03-00101-i021"> <img alt="Micromachines 03 00101 i021" src="/micromachines/micromachines-03-00101/article_deploy/html/images/micromachines-03-00101-i021.png"/></span>.</p> "> Figure 6
<p>Estimated effective high-index mirror positions, for the <span class="html-italic">m</span> = 50 structure. Solid and dashed lines are curved RG and average index slab, respectively.</p> "> Figure 7
<p>Calculated resonance wavelengths for various cavity sizes. The dashed line indicates the GMR wavelength of the curved RG wall. (<b>a</b>) Determined from the peaks of radiation spectra monitored outside the cavity; (<b>b</b>) Estimated by <span class="html-fig-inline" id="micromachines-03-00101-i024"> <img alt="Micromachines 03 00101 i024" src="/micromachines/micromachines-03-00101/article_deploy/html/images/micromachines-03-00101-i024.png"/></span>, where <span class="html-italic">ρ<sub>eff</sub></span> is the radial position of the effective high-index mirror.</p> "> Figure 8
<p>Quality factor of the resonance series indicated by A-A’ in <a href="#micromachines-03-00101-f007" class="html-fig">Figure 7</a>(a).</p> "> Figure 9
<p>(<b>a</b>) Electric field distribution of a Fresnel mode, indicated by “F” in <a href="#micromachines-03-00101-f007" class="html-fig">Figure 7</a>(a); (<b>b</b>) High-Q grating mode, indicated by “G” in <a href="#micromachines-03-00101-f007" class="html-fig">Figure 7</a>(a) and <a href="#micromachines-03-00101-f008" class="html-fig">Figure 8</a>. The size of the cavity is <span class="html-italic">m</span> = 52.47 (virtual structure).</p> ">
Abstract
:1. Introduction
2. Characteristics of a Curved RG
2.1. Structure and Method of Calculation
2.2. Reflection Spectra
2.3. Effective High-Index Mirror Position
3. Characteristics of RGC
3.1. Resonance Wavelength of the Cavity Mode
3.2. Quality Factor
4. Conclusions
Acknowledgment
References
- Collin, R.E. Electromagnetic Resonators. In Foundations for Microwave Engineering, 2nd ed; Wiley: Hoboken, NJ, USA, 2001; pp. 496–517. [Google Scholar]
- Cohn, S.B. Microwave bandpass filters containing high-Q dielectric resonators. IEEE Trans. Microw. Theory Tech. 1968, MTT-16, 218–227. [Google Scholar] [CrossRef]
- Jiao, X.H.; Cuillon, P.; Bermudez, L.A.; Auxemery, P. Whispering-Gallery modes of dielectric structures: Applications to millimeter-wave bandstop filters. IEEE Trans. Microw. Theory Tech. 1987, MTT-35, 1169–1175. [Google Scholar]
- Cros, D.; Guillon, P. Whispering Gallery dielectric resonator modes for W-band devices. IEEE Trans. Microw. Theory Tech. 1990, 38, 1667–1674. [Google Scholar] [CrossRef]
- Preu, S.; Schwefel, H.G.L.; Malzer, S.; Dohler, G.H.; Wang, L.J.; Hanson, M.; Zimmerman, J.D.; Gossard, A.C. Coupled whispering gallery mode resonators in Terahertz frequency range. Opt. Express 2008, 16, 7336–7343. [Google Scholar]
- Alexopoulos, N.G.; Kerner, S. Coupled power theorem and orthogonality relations for optical disk waveguides. J. Opt. Soc. Am. 1977, 67, 1634–1638. [Google Scholar] [CrossRef]
- Vahala, K.J. Optical microcavities. Nature 2003, 424, 839–846. [Google Scholar] [CrossRef]
- Ilchenko, V.S.; Matsko, A.B. Optical resonators with whispering-gallery modes-part II: Applications. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 15–32. [Google Scholar] [CrossRef]
- Scheuer, J.; Yariv, A. Annular Bragg defect mode resonators. J. Opt. Soc. Am. B 2003, 20, 2285–2291. [Google Scholar] [CrossRef]
- Sun, X.; Yariv, A. Surface-emitting circular DFB, disk-, and ring-Bragg resonator laser with chirped gratings: A unified theory and comparative study. Opt. Express 2008, 16, 9155–9164. [Google Scholar] [CrossRef]
- Fujita, M.; Baba, T. Microgear laser. Appl. Phys. Lett. 2002, 80, 2051–2053. [Google Scholar] [CrossRef]
- Wang, S.S.; Magnusson, R.; Bagby, J.S.; Moharam, M.G. Guided-mode resonances in planar dielectric-layer diffraction gratings. J. Opt. Soc. Am. A 1990, 7, 1470–1474. [Google Scholar] [CrossRef]
- Wang, S.S.; Magnusson, R. Theory and applications of guided-mode resonance filters. Appl. Opt. 1993, 32, 2606–2613. [Google Scholar] [CrossRef]
- Vincent, P.; Neviere, M. Corrugated dielectric waveguides: A numerical study of the second-order stop bands. Appl. Phys. 1979, 20, 345–351. [Google Scholar] [CrossRef]
- Rosenblatt, D.; Sharon, A.; Friesem, A.A. Resonant grating waveguide structures. IEEE J. Quantum Electron. 1997, 33, 2038–2059. [Google Scholar] [CrossRef]
- Peters, D.W.; Kemme, S.A.; Hadley, G.R. Effect of finite grating, waveguide width, and end-facet geometry on resonant subwavelength grating reflectivity. J. Opt. Soc. Am. A 2004, 21, 981–987. [Google Scholar] [CrossRef]
- Peters, D.W.; Boye, R.R.; Wendt, J.R.; Kellogg, R.A.; Kemme, S.A.; Carter, T.R.; Samora, S. Demonstration of polarization-independent resonant subwavelength grating filter arrays. Opt. Lett. 2010, 35, 3201–3203. [Google Scholar]
- Ding, Y.; Magnusson, R. Resonant leaky-mode spectral-band engineering and device applications. Opt. Express 2004, 12, 5661–5674. [Google Scholar] [CrossRef]
- Liu, Z.S.; Tibuleac, S.; Shin, D.; Young, P.P.; Magnusson, R. High-efficiency guided-mode resonance filter. Opt. Lett. 1998, 23, 1556–1558. [Google Scholar] [CrossRef]
- Fattal, D.; Li, J.; Peng, Z.; Fiorentino, M.; Beausoleil, R.G. Flat dielectric grating reflectors with focusing abilities. Nature Photon. 2010, 4, 466–470. [Google Scholar] [CrossRef]
- Ohtera, Y.; Iijima, S.; Yamada, H. Guided-mode resonance in curved grating structures. Opt. Lett. 2011, 36, 1689–1691. [Google Scholar] [CrossRef]
- Lu, M.; Zhai, H.; Magnusson, R. Focusing light with curved guided-mode resonance reflectors. Micromachines 2011, 2, 150–156. [Google Scholar] [CrossRef]
- Hocker, G.B.; Burns, W.K. Mode dispersion in diffused channel waveguides by the effective index method. Appl. Opt. 1977, 16, 113–118. [Google Scholar] [CrossRef]
- Huy, K.P.; Morand, A.; Amans, D.; Benech, P. Analytical study of the whispering-gallery mode in two-dimensional microgear cavity using coupled-mode theory. J. Opt. Soc. Am. B 2005, 22, 1793–1803. [Google Scholar] [CrossRef]
- Taflove, A. Computational Electrodynamics: The Finite-Difference Time-Domain Method; Artech House: Boston, MA, USA, 1995; pp. 397–410. [Google Scholar]
- Xu, Y.; Vuckovic, J.S.; Lee, R.K.; Painter, O.J.; Scherer, A.; Yariv, A. Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity. J. Opt. Soc. Am. B 1999, 16, 465–474. [Google Scholar] [CrossRef]
- Gambling, W.A.; Matsumura, H.; Ragdale, C.M. Field deformation in a curved single-mode fibre. Electron. Lett. 1978, 14, 130–132. [Google Scholar]
- Fan, S.; Joannopoulos, J.D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 2002, 65, 235112:1–235112:8. [Google Scholar]
- Pozer, D.M. Microwave Engineering, 3rd ed; Wiley: Hoboken, NJ, USA, 2005; pp. 117–126. [Google Scholar]
- Haus, H.A. Waves and Fields in Optoelectronics; Prentice-Hall: Upper Saddle River, NJ, USA, 1984; p. 208. [Google Scholar]
- Magnusson, R.; S-Saremi, M. Widely tunable guided-mode resonance nanoelectromechanical RGB pixels. Opt. Express 2007, 15, 10903–10910. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ohtera, Y.; Iijima, S.; Yamada, H. Cylindrical Resonator Utilizing a Curved Resonant Grating as a Cavity Wall. Micromachines 2012, 3, 101-113. https://doi.org/10.3390/mi3010101
Ohtera Y, Iijima S, Yamada H. Cylindrical Resonator Utilizing a Curved Resonant Grating as a Cavity Wall. Micromachines. 2012; 3(1):101-113. https://doi.org/10.3390/mi3010101
Chicago/Turabian StyleOhtera, Yasuo, Shohei Iijima, and Hirohito Yamada. 2012. "Cylindrical Resonator Utilizing a Curved Resonant Grating as a Cavity Wall" Micromachines 3, no. 1: 101-113. https://doi.org/10.3390/mi3010101