The Pseudoalteromonas luteoviolacea L-amino Acid Oxidase with Antimicrobial Activity Is a Flavoenzyme
<p>Reaction catalyzed by flavin adenine dinucleotide (FAD)-dependent L-amino acid oxidases (LAAOs).</p> "> Figure 2
<p>Identification of proteins with LAAO and antimicrobial activity in <span class="html-italic">P. luteoviolacea</span> CPMOR-2. (<b>A</b>) SDS-PAGE of concentrated supernatants of CPMOR-2 strain grown in MNGY medium (See materials and methods). Arrows point to the protein bands with LAAO activity measured against casamino acids. LAAO activity for each gel fragment is expressed as relative fluorescence units per min (RFU/min). (<b>B</b>) Antibiograms against <span class="html-italic">E. coli</span> UM202 of fragment 4 sliced from gel in A showing antimicrobial activity.</p> "> Figure 3
<p>Conserved flavin-binding motifs in Pl-LAAO peptide sequence from <span class="html-italic">P. luteoviolacea</span> CPMOR-2. (<b>A</b>) The dinucleotide binding motif (DBM) domain (highlighted in grey) and GG-motif (highlighted in green) in the N-terminal region of the Pl-LAAO sequence. The three conserved Gly in the DBM domain are in blue, while the two conserved Gly in the GG-motif are in red. The secondary structure was predicted using the tool “JPred 4” (<a href="http://www.compbio.dundee.ac.uk/jpred/" target="_blank">http://www.compbio.dundee.ac.uk/jpred/</a>). H: alpha helix; E: beta sheet; -: disordered structure. (<b>B</b>) First half of the classic Rossmann fold topology. The arrows designate β-strands and rectangles denote α-helices. (<b>C</b>) Conserved motif in the C-terminal region (highlighted in red) of proteins from the glutathione reductase family. Conserved residues are in green.</p> "> Figure 4
<p>(<b>A</b>) UV-VIS spectrum of purified recombinant Pl-LAAO enzyme solution. (<b>B</b>) LAAO activity spectrum of Pl-LAAO. Values are expressed as percentage of the activity on the best substrate. The 20-protein standard amino acids were assayed at 2 mM, but only the oxidized ones are shown.</p> "> Figure 5
<p>Detection in non-denaturing SDS-PAGE of recombinant Pl-LAAO activity. (<b>A</b>) SDS-PAGE of crude extract and purified Pl-LAAO samples. (1) Crude extract of <span class="html-italic">E. coli</span> CD03 containing pET-15b with no insert. (2) Crude extract of <span class="html-italic">E. coli</span> CD03 containing pET-15b with <span class="html-italic">Pl-laao</span> as an insert. (3) Purified Pl-LAAO sample with no treatment. (4) Purified Pl-LAAO sample boiled at 95 °C for 5 min. (<b>B</b>) A parallel lane similar to lane 3 was sliced to perform antibiograms against <span class="html-italic">E. coli</span> UM202 in a Luria-Bertani (LB) medium.</p> "> Figure 6
<p>Antibiograms of purified recombinant Pl-LAAO against <span class="html-italic">E. coli</span> UM202. (<b>A</b>) Antibiograms in LB. Pl-LAAO disk loaded with 20 μL of purified protein at 7 × 10<sup>−2</sup> mg mL<sup>−1</sup>. CAT—disk loaded with 20 μL of catalase 10 mg mL<sup>−1</sup>. (<b>B</b>) Antibiogram in M9 medium in the presence of some amino acids at 50 mM as a substrate. White disks contained 20 μl of Pl-LAAO at 0.25 mg mL<sup>−1</sup>. Cas—casamino acids 10%.</p> "> Figure 7
<p>Phylogenetic relationships of Pl-LAAO similar proteins. The tree was created by the neighbor-joining (NJ) method integrated in the program MEGA6. The sequences were aligned using the program MUSCLE built in MEGA6. The evolutionary distances were computed using the p-distance method and are in the units of the number of amino acid differences per site. Numbers at the branches indicate bootstrap values higher than 70% for both NJ and maximum likelihood (ML) trees.</p> "> Figure 8
<p>General genome region surrounding <span class="html-italic">Pl-laao</span>-like genes in <span class="html-italic">P. luteoviolacea</span> strains. (1) Hypothetical protein. (2) Tetratricopeptide repeat (TPR)-like response regulator. (3) Indolepyruvate decarboxylase. (4) and (5) Spondin_N similar proteins. (6) OmpR family response regulator. (7) Signal transduction histidine kinase. (8) Alcohol dehydrogenase. (9) Multidrug and toxic compounds extrusion (MATE) family efflux protein. Color code is for cluster of orthologous groups (COG) function category: Pink—carbohydrate transport and metabolism; green—transcription; gray—signal transduction mechanisms; light brown—unknown.</p> "> Figure 9
<p>Phylogenetic relationships between proteins similar to Pl-LAAO and representative amino acid oxidases [<a href="#B5-marinedrugs-16-00499" class="html-bibr">5</a>]. The tree was created by the NJ method integrated in the program MEGA6. The sequences were aligned using the program MUSCLE built in MEGA6. The evolutionary distances were computed using the p-distance method and are in the units of the number of amino acid differences per site. The numbers at the branches indicate bootstrap values higher than 70% for both of the NJ and ML trees. Among the Pl-LAAO similar proteins, we selected two proteins representing each phylogenetic group. For Group 1: <span class="html-italic">Algoriphagus</span> sp. ARW1R1 Ga0206402_101228 (1) and <span class="html-italic">Spirosoma fluviale</span> DSM 29961 Ga0170416_5792 (2). For Group 2: <span class="html-italic">Tenacibaculum ovolyticum</span> DSM 18103 H518DRAFT_00204 (3) and <span class="html-italic">Lewinella persica</span> DSM 23188 B036DRAFT_03117 (4). For Group 3: <span class="html-italic">Pseudoalteromonas luteoviolacea</span> CPMOR-2 Pl-LAAO (5) and <span class="html-italic">Pseudoalteromonas luteoviolacea</span> 2ta16 PL2TA16_02145 (6). LAAOs—L-amino acid oxidases; DAAO—D-amino acid oxidases; LASPOs—L-aspartate oxidases.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Identification of the Gene Encoding the LAAO Activity in CPMOR-2 Strain
2.2. Sequence Analysis of Pl-LAAO
2.3. Recombinant Expression and Partial Biochemical Characterization of Pl-LAAO
2.4. Detection, Distribution, and Phylogenetic Analysis of Proteins Similar to Pl-LAAO
3. Discussion
4. Materials and Methods
4.1. Strains, Culture Media, Plasmids, and Primers
4.2. DNA Manipulations
4.3. Expression and Purification of Recombinant Protein
4.4. SDS-PAGE
4.5. Activity Assays
4.6. UV-VIS Spectrum
4.7. Mass Spectrometry Analysis
4.8. Detection, Alignment, and Phylogenetic Analysis of Pl-LAAO Similar Proteins
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Desriac, F.; Rodrigues, S.; Doghri, I.; Sablé, S.; Isabelle, L.; Fleury, Y.; Bazire, A.; Dufour, A. Biostructures, biomaterials, and biomolecules for other applications. In Blue Biotechnology: Production and Use of Marine Molecules, 1st ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; pp. 791–809. [Google Scholar]
- May-Zin, W.W.; Buttachon, S.; Dethoup, T.; Fernandes, C.; Cravo, S.; Pinto, M.M.; Gales, L.; Pereira, J.A.; Silva, A.M.; Sekeroglu, N.; et al. New cyclotetrapeptides and a new diketopiperzine derivative from the marine sponge-associated fungus Neosartorya glabra KUFA 0702. Mar. Drugs 2016, 14. [Google Scholar] [CrossRef] [PubMed]
- Bowman, J.P. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar. Drugs 2007, 5, 220–241. [Google Scholar] [CrossRef] [PubMed]
- Campillo-Brocal, J.C.; Chacon-Verdu, M.D.; Lucas-Elio, P.; Sanchez-Amat, A. Distribution in microbial genomes of genes similar to lodA and goxA which encode a novel family of quinoproteins with amino acid oxidase activity. BMC Genom. 2015, 16, 231. [Google Scholar] [CrossRef] [PubMed]
- Campillo-Brocal, J.C.; Lucas-Elio, P.; Sanchez-Amat, A. Distribution in different organisms of amino acid oxidases with FAD or a quinone as cofactor and their role as antimicrobial proteins in marine bacteria. Mar. Drugs 2015, 13, 7403–7418. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.; Lucas-Elio, P.; Sanchez-Amat, A.; Solano, F. A novel type of lysine oxidase: L-lysine-epsilon-oxidase. Biochim. Biophys. Acta 2006, 1764, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Izidoro, L.F.; Sobrinho, J.C.; Mendes, M.M.; Costa, T.R.; Grabner, A.N.; Rodrigues, V.M.; da Silva, S.L.; Zanchi, F.B.; Zuliani, J.P.; Fernandes, C.F.; et al. Snake venom L-amino acid oxidases: trends in pharmacology and biochemistry. Biomed. Res. Int. 2014, 2014, 196754. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Qiao, H. Advances in non-snake venom L-amino acid oxidase. Appl. Biochem. Biotechnol. 2012, 167, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.A.; Cheng, C.H.; Liu, S.Y.; Lo, C.T.; Lee, J.W.; Peng, K.C. Identification of antibacterial mechanism of L-amino acid oxidase derived from Trichoderma harzianum ETS 323. FEBS J. 2011, 278, 3381–3394. [Google Scholar] [CrossRef] [PubMed]
- Kitani, Y.; Toyooka, K.; Endo, M.; Ishizaki, S.; Nagashima, Y. Intra-tissue localization of an antibacterial L-amino acid oxidase in the rockfish Sebastes schlegeli. Dev. Comp. Immunol. 2013, 39, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Hossain, G.S.; Li, J.; Shin, H.D.; Du, G.; Liu, L.; Chen, J. L-Amino acid oxidases from microbial sources: types, properties, functions, and applications. Appl. Microbiol. Biotechnol. 2014, 98, 1507–1515. [Google Scholar] [CrossRef]
- Mai-Prochnow, A.; Lucas-Elio, P.; Egan, S.; Thomas, T.; Webb, J.S.; Sanchez-Amat, A.; Kjelleberg, S. Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several gram-negative bacteria. J. Bacteriol. 2008, 190, 5493–5501. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Wang, J.; Tang, K.; Shi, X.; Wang, S.; Zhu, W.M.; Zhang, X.H. Purification and characterization of antibacterial compounds of Pseudoalteromonas flavipulchra JG1. Microbiology 2012, 158, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.M.; Lin, C.Y.; Chen, C.A.; Wang, J.T.; Sheu, S.Y. Involvement of an l-amino acid oxidase in the activity of the marine bacterium Pseudoalteromonas flavipulchra against methicillin-resistant Staphylococcus aureus. Enzyme Microb. Technol. 2010, 47, 52–58. [Google Scholar] [CrossRef]
- McCarthy, S.A.; Johnson, R.M.; Kakimoto, D. Characterization of an antibiotic produced by Alteromonas luteoviolacea Gauthier 1982, 85 isolated from Kinko Bay, Japan. J. Appl. Bacteriol. 1994, 77, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.; Espinosa, E.; Bertazzo, M.; Lucas-Elio, P.; Solano, F.; Sanchez-Amat, A. The macromolecule with antimicrobial activity synthesized by Pseudoalteromonas luteoviolacea strains is an L-amino acid oxidase. Appl. Microbiol. Biotechnol. 2008, 79, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.M.; Sheu, F.S.; Sheu, S.Y. Novel L-amino acid oxidase with algicidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquimarina sp. Enzyme Microb. Technol. 2011, 49, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Andreo-Vidal, A.; Mamounis, K.J.; Sehanobish, E.; Avalos, D.; Campillo-Brocal, J.C.; Sanchez-Amat, A.; Yukl, E.T.; Davidson, V.L. Structure and enzymatic properties of an unusual cysteine tryptophylquinone-dependent glycine oxidase from Pseudoalteromonas luteoviolacea. Biochemistry 2018. [Google Scholar] [CrossRef] [PubMed]
- Campillo-Brocal, J.C.; Lucas-Elio, P.; Sanchez-Amat, A. Identification in Marinomonas mediterranea of a novel quinoprotein with glycine oxidase activity. Microbiologyopen 2013, 2, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Dym, O.; Eisenberg, D. Sequence-structure analysis of FAD-containing proteins. Protein Sci. 2001, 10, 1712–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottoms, C.A.; Smith, P.E.; Tanner, J.J. A structurally conserved water molecule in Rossmann dinucleotide-binding domains. Protein Sci. 2002, 11, 2125–2137. [Google Scholar] [CrossRef] [PubMed]
- Vallon, O. New sequence motifs in flavoproteins: evidence for common ancestry and tools to predict structure. Proteins 2000, 38, 95–114. [Google Scholar] [CrossRef]
- Yu, Z.; Zhou, N.; Qiao, H.; Qiu, J. Identification, cloning, and expression of L-amino acid oxidase from marine Pseudoalteromonas sp. B3. Sci. World J. 2014, 2014, 979858. [Google Scholar] [CrossRef]
- Ehara, T.; Kitajima, S.; Kanzawa, N.; Tamiya, T.; Tsuchiya, T. Antimicrobial action of achacin is mediated by L-amino acid oxidase activity. FEBS Lett. 2002, 531, 509–512. [Google Scholar] [CrossRef]
- Kishishita, S.; Okajima, T.; Kim, M.; Yamaguchi, H.; Hirota, S.; Suzuki, S.; Kuroda, S.; Tanizawa, K.; Mure, M. Role of copper ion in bacterial copper amine oxidase: spectroscopic and crystallographic studies of metal-substituted enzymes. J. Am. Chem. Soc. 2003, 125, 1041–1055. [Google Scholar] [CrossRef] [PubMed]
- Hahn, K.; Hertle, Y.; Bloess, S.; Kottke, T.; Hellweg, T.; Fischer von Mollard, G. Activation of recombinantly expressed L-amino acid oxidase from Rhizoctonia solani by Sodium Dodecyl Sulfate. Molecules 2017, 22. [Google Scholar] [CrossRef] [PubMed]
- Kamio, M.; Ko, K.C.; Zheng, S.; Wang, B.; Collins, S.L.; Gadda, G.; Tai, P.C.; Derby, C.D. The chemistry of escapin: Identification and quantification of the components in the complex mixture generated by an L-amino acid oxidase in the defensive secretion of the sea snail Aplysia californica. Chemistry 2009, 15, 1597–1603. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2759. [Google Scholar] [CrossRef]
- Gauthier, M.J. Modification of bacterial respiration by a macromolecular polyanionic antibiotic produced by a marine Alteromonas. Antimicrob. Agents Chemother. 1976, 9, 361–366. [Google Scholar] [CrossRef]
- Lucas-Elio, P.; Gomez, D.; Solano, F.; Sanchez-Amat, A. The antimicrobial activity of marinocine, synthesized by Marinomonas mediterranea, is due to hydrogen peroxide generated by its lysine oxidase activity. J. Bacteriol. 2006, 188, 2493–2501. [Google Scholar] [CrossRef]
- Chen, W.M.; Lin, C.Y.; Sheu, S.Y. Investigating antimicrobial activity in Rheinheimera sp. due to hydrogen peroxide generated by L-lysine oxidase activity. Enzyme Microb. Technol. 2010, 46, 487–493. [Google Scholar] [CrossRef]
- Davis, M.A.; Askin, M.C.; Hynes, M.J. Amino acid catabolism by an areA-regulated gene encoding an L-amino acid oxidase with broad substrate specificity in Aspergillus nidulans. Appl. Environ. Microbiol. 2005, 71, 3551–3555. [Google Scholar] [CrossRef] [PubMed]
- Nuutinen, J.T.; Marttinen, E.; Soliymani, R.; Hildén, K.; Timonen, S. L-Amino acid oxidase of the fungus Hebeloma cylindrosporum displays substrate preference towards glutamate. Microbiology 2012, 158, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Johnson, P.M.; Ko, K.C.; Kamio, M.; Germann, M.W.; Derby, C.D.; Tai, P.C. Cloning, characterization and expression of escapin, a broadly antimicrobial FAD-containing L-amino acid oxidase from ink of the sea hare Aplysia californica. J. Exp. Biol. 2005, 208, 3609–3622. [Google Scholar] [CrossRef] [PubMed]
- Solano, F.; Garcia, E.; Perez, D.; Sanchez-Amat, A. Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Appl. Environ. Microbiol. 1997, 63, 3499–3506. [Google Scholar] [PubMed]
- Hernandez-Romero, D.; Lucas-Elio, P.; Lopez-Serrano, D.; Solano, F.; Sanchez-Amat, A. Marinomonas mediterranea is a lysogenic bacterium that synthesizes R-bodies. Microbiology 2003, 149, 2679–2686. [Google Scholar] [CrossRef] [PubMed]
- Molina-Quintero, L.R.; Lucas-Elio, P.; Sanchez-Amat, A. Regulation of the Marinomonas mediterranea antimicrobial protein lysine oxidase by L-lysine and the sensor histidine kinase PpoS. Appl. Environ. Microbiol. 2010, 76, 6141–6149. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.F.; Russell, D.W. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2001. [Google Scholar]
- Loewen, P.C.; Switala, J.; Triggs-Raine, B.L. Catalases HPI and HPII in Escherichia coli are induced independently. Arch. Biochem. Biophys. 1985, 243, 144–149. [Google Scholar] [CrossRef]
- Dower, W.J.; Miller, J.F.; Ragsdale, C.W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988, 16, 6127–6145. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Bhunia, A.K.; Johson, M.C.; Ray, B. Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Ind. Microbiol. 1987, 2, 319–322. [Google Scholar] [CrossRef]
- Lucas-Elio, P.; Hernandez, P.; Sanchez-Amat, A.; Solano, F. Purification and partial characterization of marinocine, a new broad-spectrum antibacterial protein produced by Marinomonas mediterranea. Biochim. Biophys. Acta 2005, 1721, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.A.; Markowitz, V.M.; Chu, K.; Palaniappan, K.; Szeto, E.; Pillay, M.; Ratner, A.; Huang, J.; Andersen, E.; Huntemann, M.; et al. IMG/M: Integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 2017, 45, D507–D516. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
Taxon | Phylogenetic Group 1 | Phylogenetic Group 2 | Phylogenetic Group 3 | Ungrouped |
---|---|---|---|---|
Proteobacteria (29907) | 28 | 0 | 1 | 1 |
* Alphaproteobacteria (4218) | 0 | 0 | 1 | 0 |
* Gammaproteobacteria (19977) | 28 | 0 | 0 | 0 |
* Betaproteobacteria (3182) | 0 | 0 | 0 | 1 |
Bacteroidetes (2483) | 0 | 8 | 5 | 5 |
* Saprospiria (15) | 0 | 0 | 2 | 0 |
* Flavobacteriia (1009) | 0 | 0 | 3 | 0 |
* Cytophagia (229) | 0 | 8 | 0 | 4 |
* Unclassified (216) | 0 | 0 | 0 | 1 |
Nitrospinae (54) | 0 | 0 | 1 | 0 |
* Nitrospinia (21) | 0 | 0 | 1 | 0 |
TOTAL | 28 | 8 | 7 | 6 |
Strains | Relevant Genotype and Description, or Sequence | Reference or Source |
---|---|---|
Pseudoalteromonas luteoviolacea CPMOR-2 | Wild-type | [16] |
Escherichia coli CD03 | BL21(DE3) katE12::Tn10 katG::Tn5, [Cat+/−] | [25] |
Escherichia coli UM202 | MP180 katG::Tn10, [Cat+/−] | [39] |
Plasmids | ||
pET15b | pET15b | Novagen |
pETpl-laao.15 | pET15b, Pl-laao | This study |
Primers 1 | ||
AminoORCPMOR2Nde (D) | 5′-AAGGAATACATATGACACATTATACTTTTGG-3′ | |
AminoORCPMOR2Bam (R) | 5′-CTTCTAACGGATCCTTAAAGTAATCTG-3′ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreo-Vidal, A.; Sanchez-Amat, A.; Campillo-Brocal, J.C. The Pseudoalteromonas luteoviolacea L-amino Acid Oxidase with Antimicrobial Activity Is a Flavoenzyme. Mar. Drugs 2018, 16, 499. https://doi.org/10.3390/md16120499
Andreo-Vidal A, Sanchez-Amat A, Campillo-Brocal JC. The Pseudoalteromonas luteoviolacea L-amino Acid Oxidase with Antimicrobial Activity Is a Flavoenzyme. Marine Drugs. 2018; 16(12):499. https://doi.org/10.3390/md16120499
Chicago/Turabian StyleAndreo-Vidal, Andrés, Antonio Sanchez-Amat, and Jonatan C. Campillo-Brocal. 2018. "The Pseudoalteromonas luteoviolacea L-amino Acid Oxidase with Antimicrobial Activity Is a Flavoenzyme" Marine Drugs 16, no. 12: 499. https://doi.org/10.3390/md16120499