Adaptive Swarm Fuzzy Logic Controller of Multi-Joint Lower Limb Assistive Robot
<p>Structure and kinematic diagram of LLAR: (<b>a</b>) components of LLAR, (<b>b</b>) kinematic diagram.</p> "> Figure 2
<p>Hardware structure of LLAR.</p> "> Figure 3
<p>Overall block diagram of LASFC.</p> "> Figure 4
<p>The input membership functions for <span class="html-italic">s</span> and <math display="inline"><semantics> <mover accent="true"> <mi>s</mi> <mo>˙</mo> </mover> </semantics></math> for the hip.</p> "> Figure 5
<p>The output membership functions for <math display="inline"><semantics> <msub> <mi>K</mi> <mi>f</mi> </msub> </semantics></math> for the hip.</p> "> Figure 6
<p>Angular trajectories and error comparison of LAC, SFLC, and LASFC for left hip, left knee, right hip, and right knee: (<b>a</b>) left hip, (<b>b</b>) left hip error, (<b>c</b>) left knee, (<b>d</b>) left knee error, (<b>e</b>) right hip, (<b>f</b>) right hip error, (<b>g</b>) right knee, (<b>h</b>) right knee error.</p> "> Figure 7
<p><math display="inline"><semantics> <msub> <mi>K</mi> <mi>f</mi> </msub> </semantics></math> changes over time for left hip, left knee, right hip, and right knee: (<b>a</b>) left hip, (<b>b</b>) left knee, (<b>c</b>) right hip, (<b>d</b>) right knee.</p> "> Figure 8
<p><math display="inline"><semantics> <msub> <mi>K</mi> <mi>f</mi> </msub> </semantics></math> changes over <span class="html-italic">s</span> and <math display="inline"><semantics> <mover accent="true"> <mi>s</mi> <mo>˙</mo> </mover> </semantics></math> for left hip, left knee, right hip, and right knee: (<b>a</b>) left hip, (<b>b</b>) left knee, (<b>c</b>) right hip, (<b>d</b>) right knee.</p> "> Figure 9
<p>Changes of <span class="html-italic">L</span> and <span class="html-italic">K</span> parameters for left hip, left knee, right hip, and right knee: (<b>a</b>) <span class="html-italic">L</span> for left hip, (<b>b</b>) <span class="html-italic">K</span> for left hip, (<b>c</b>) <span class="html-italic">L</span> for left knee, (<b>d</b>) <span class="html-italic">K</span> for left knee, (<b>e</b>) <span class="html-italic">L</span> for right hip, (<b>f</b>) <span class="html-italic">K</span> for right hip, (<b>g</b>) <span class="html-italic">L</span> for right knee, (<b>h</b>) <span class="html-italic">K</span> for right knee.</p> ">
Abstract
:1. Introduction
- A novel LASFC, which integrates SFLC and LAC strategies, is presented for each joint of the LLAR to achieve the predetermined angular trajectories.
- A SFLC is developed to tune the parameters of the controller based on sliding filtered steady-state error. Its defuzzification subsets are determined by PSO.
- A LAC strategy is initialized by PSO to adjust the controller parameters in real-time.
- The novel LASFC is implemented in the actual 4-DoF LLAR.
2. Overview of the LLAR Structure
2.1. Mechanical Design and Structure
2.2. Mathematical Analysis of Dynamic Model
2.3. Actuator Model
3. Development of Lyapunov Adaptive Swarm-Fuzzy Logic Control Strategies
3.1. Overview of Control Strategy
Algorithm 1 Pseudo code of LASFC. |
|
3.2. Swarm-Fuzzy Logic Control Strategy
- is the constant value tuned by PSO. Its average values in Table 3 are selected for hip and knee, which are 0.88 and 0.76, respectively.
- is the output of the fuzzy inference. It is determined by the linguistic rules of the fuzzy controller based on its maximum and minimum obtained by PSO in Table 3, which are 6.82 and 1.32 for hip and 6.95 and 2.64 for knee.
Algorithm 2 Pseudo code of SLFC |
|
3.3. Lyapunov Adaptive Control Strategy
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kimura, T.; Horikoshi, Y.; Kuriyagawa, C.; Niiyama, Y. Rho/rock pathway and noncoding rnas: Implications in ischemic stroke and spinal cord injury. Int. J. Mol. Sci. 2021, 22, 11573. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Ding, H.; Zhou, H.; Wei, Z.; Liu, L.; Pan, D.; Feng, S. Epidemiology of worldwide spinal cord injury: A literature review. J. Neurorestoratology 2017, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.H.; Dong, Q.; Chew, S.Y. Injectable hydrogels in stroke and spinal cord injury treatment: A review on hydrogel materials, cell-matrix interactions and glial involvement. Mater. Adv. 2021, 2, 2561–2583. [Google Scholar] [CrossRef]
- Shukun, H.; Gang, W.; Zhouying, W.B.D.; Yi, Z. Rehabilitative training paired with peripheral stimulation promotes motor recovery after ischemic cerebral stroke. Exp. Neurol. 2022, 349, 113960. [Google Scholar] [CrossRef]
- Hazle, C.R.; Lee, M. Strategies to overcome size and mechanical disadvantages in manual therapy. J. Man. Manip. Ther. 2016, 24, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Yang, S.; Xue, Q. Lower limb rehabilitation exoskeleton robot: A review. Adv. Mech. Eng. 2021, 13, 16878140211011862. [Google Scholar] [CrossRef]
- Lambercy, O.; Ranzani, R.; Gassert, R. Chapter 15—Robot-assisted rehabilitation of hand function. In Rehabilitation Robotics; Colombo, R., Sanguineti, V., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 205–225. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, K.; Zhang, L.; Wu, X.; Zhang, T.; Li, Q.; Li, X.; Su, C.Y. Human-in-the-Loop Control of a Wearable Lower Limb Exoskeleton for Stable Dynamic Walking. IEEE/ASME Trans. Mechatron. 2021, 26, 2700–2711. [Google Scholar] [CrossRef]
- Franceschini, M.; Mazzoleni, S.; Goffredo, M.; Pournajaf, S.; Galafate, D.; Criscuolo, S.; Agosti, M.; Posteraro, F. Upper limb robot-assisted rehabilitation versus physical therapy on subacute stroke patients: A follow-up study. J. Bodyw. Mov. Ther. 2020, 24, 194–198. [Google Scholar] [CrossRef]
- Shi, D.; Zhang, W.; Zhang, W.; Ding, X. A Review on Lower Limb Rehabilitation Exoskeleton Robots. Chin. J. Mech. Eng. English Ed. 2019, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fuentes-Alvarez, R.; Hernandez, J.H.; Matehuala-Moran, I.; Alfaro-Ponce, M.; Lopez-Gutierrez, R.; Salazar, S.; Lozano, R. Assistive robotic exoskeleton using recurrent neural networks for decision taking for the robust trajectory tracking. Expert Syst. Appl. 2022, 193, 116482. [Google Scholar] [CrossRef]
- Taherifar, A.; Vossoughi, G.; Ghafari, A.S. Assistive-compliant control of wearable robots for partially disabled individuals. Control Eng. Pract. 2018, 74, 177–790. [Google Scholar] [CrossRef]
- Jabbari Asl, H.; Narikiyo, T.; Kawanishi, M. Neural network-based bounded control of robotic exoskeletons without velocity measurements. Control Eng. Pract. 2018, 80, 94–104. [Google Scholar] [CrossRef]
- Tu, Y.; Zhu, A.; Song, J.; Shen, H.; Shen, Z.; Zhang, X.; Cao, G. An adaptive sliding mode variable admittance control method for lower limb rehabilitation exoskeleton robot. Appl. Sci. 2020, 10, 2536. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Chen, Z.; Yan, Y.; Xiong, W.; Jiang, D.; Shi, Y. Model Identification and Human-robot Coupling Control of Lower Limb Exoskeleton with Biogeography-based Learning Particle Swarm Optimization. Int. J. Control. Autom. Syst. 2022, 20, 589–600. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, D.; Dong, X. Enhanced neural network control of lower limb rehabilitation exoskeleton by add-on repetitive learning. Neurocomputing 2019, 323, 256–264. [Google Scholar] [CrossRef]
- Liu, F.; Wang, H.; Shi, Q.; Wang, H.; Zhang, M.; Zhao, H. Comparison of an ANFIS and Fuzzy PID Control Model for Performance in a Two-Axis Inertial Stabilized Platform. IEEE Access 2017, 5, 12951–12962. [Google Scholar] [CrossRef]
- Qu, Z.; Wei, W.; Wang, W.; Zha, S.; Li, T.; Gu, J.; Yue, C. Research on Fuzzy Adaptive Impedance Control of Lower Extremity Exoskeleton. In Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation, Tianjin, China, 4–7 August 2019; pp. 939–944. [Google Scholar]
- Ali, J.A.; Hannan, M.A.; Mohamed, A.; Abdolrasol, M.G.M. Fuzzy logic speed controller optimization approach for induction motor drive using backtracking search algorithm. Measurement 2016, 78, 49–62. [Google Scholar] [CrossRef]
- Sharma, R.; Gaur, P.; Bhatt, S.; Joshi, D. Optimal fuzzy logic-based control strategy for lower limb rehabilitation exoskeleton. Appl. Soft Comput. 2021, 105, 107226. [Google Scholar] [CrossRef]
- Wu, Q.; Xingsong, W.; Bai, C.; Hongtao, W. Development of an RBFN-based neural-fuzzy adaptive control strategy for an upper limb rehabilitation exoskeleton. Mechatronics 2018, 53, 85–94. [Google Scholar] [CrossRef]
- Sun, W.; Lin, J.W.; Su, S.F.; Wang, N.; Er, M.J. Reduced Adaptive Fuzzy Decoupling Control for Lower Limb Exoskeleton. IEEE Trans. Cybern. 2021, 51, 1099–1109. [Google Scholar] [CrossRef]
- Premkumar, K.; Manikandan, B.V. Bat algorithm optimized fuzzy PD based speed controller for brushless direct current motor. Eng. Sci. Technol. Int. J. 2016, 19, 818–840. [Google Scholar] [CrossRef] [Green Version]
- Amiri, M.S.; Ramli, R.; Ibrahim, M.F. Genetically optimized parameter estimation of mathematical model for multi-joints hip–knee exoskeleton. Robot. Auton. Syst. 2020, 125, 103425. [Google Scholar] [CrossRef]
- Digehsara, P.A.; Chegini, S.N.; Bagheri, A.; Roknsaraei, M.P. An improved particle swarm optimization based on the reinforcement of the population initialization phase by scrambled Halton sequence. Cogent Eng. 2020, 7, 1737383. [Google Scholar] [CrossRef]
- Abdmouleh, Z.; Gastli, A.; Ben-brahim, L.; Haouari, M. Review of optimization techniques applied for the integration of distributed generation from renewable energy sources. Renew. Energy 2017, 113, 266–280. [Google Scholar] [CrossRef]
- Amiri, M.S.; Ramli, R. Intelligent Trajectory Tracking Behavior of a Multi-Joint Robotic Arm via Genetic–Swarm Optimization for the Inverse Kinematic Solution. Sensors 2021, 21, 3171. [Google Scholar] [CrossRef]
- Lu, K.; Ma, Z. A modified whale optimization algorithm for parameter estimation of software reliability growth models. J. Algorithms Comput. Technol. 2021, 15, 1–14. [Google Scholar] [CrossRef]
- Amiri, M.S.; Ramli, R.; Ibrahim, M.F.; Wahab, D.A.; Aliman, N. Adaptive Particle Swarm Optimization of PID Gain Tuning for Lower-Limb Human Exoskeleton in Virtual Environment. Mathematics 2020, 8, 2040. [Google Scholar] [CrossRef]
- Aliman, N.; Ramli, R.; Haris, S.M.; Amiri, M.S.; Van, M. A robust adaptive-fuzzy-proportional-derivative controller for a rehabilitation lower limb exoskeleton. Eng. Sci. Technol. Int. J. 2022, 35, 101097. [Google Scholar] [CrossRef]
- Li, X.; Yang, X. Lyapunov stability analysis for nonlinear systems with state-dependent state delay. Automatica 2020, 112, 108674. [Google Scholar] [CrossRef]
- Amiri, M.S.; Ramli, R.; Ibrahim, M.F. Initialized Model Reference Adaptive Control for Lower Limb Exoskeleton. IEEE Access 2019, 7, 167210–167220. [Google Scholar] [CrossRef]
- Campa, R.; Soto, I.; Martínez, O. Modelling and control of a spherical pendulum via a non–minimal state representation. Math. Comput. Model. Dyn. Syst. 2021, 27, 3–30. [Google Scholar] [CrossRef]
- Amiri, M.S.; Ramli, R.; Tarmizi, M.A.A.; Ibrahim, M.F.; Danesh Narooei, K. Simulation and Control of a Six Degree of Freedom Lower Limb Exoskeleton. J. Kejuruter. 2020, 32, 197–204. [Google Scholar] [CrossRef]
- Wu, J.; Gao, J.; Song, R.; Li, R.; Li, Y.; Jiang, L. The design and control of a 3DOF lower limb rehabilitation robot. Mechatronics 2016, 33, 13–22. [Google Scholar] [CrossRef]
- Belkadi, A.; Oulhadj, H.; Touati, Y.; Khan, S.A.; Daachi, B. On the robust PID adaptive controller for exoskeletons: A particle swarm optimization based approach. Appl. Soft Comput. 2017, 60, 87–100. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, J. Neural-network-based nonlinear model predictive tracking control of a pneumatic muscle actuator-driven exoskeleton. IEEE/CAA J. Autom. Sin. 2020, 7, 1478–1488. [Google Scholar] [CrossRef]
Hip () | 26.4499 | 0.001 | 0.2362 | 1.606 | 4.6603 |
Knee () | 25.9909 | 0.001 | 0.0641 | 0.5658 | 1.7326 |
i | ||||
---|---|---|---|---|
20 | 2 | 2 | 1.2 | 400 |
Hip | Knee | |||||
---|---|---|---|---|---|---|
ITAE | ITAE | |||||
6.82 | 0.75 | 1.62 | 5.61 | 0.73 | 0.76 | |
1.32 | 0.99 | 2.35 | 6.95 | 0.67 | 0.66 | |
5.87 | 0.73 | 1.91 | 6.15 | 0.84 | 0.61 | |
6.45 | 0.82 | 1.57 | 4.85 | 0.78 | 0.78 | |
PSO | 1.64 | 0.78 | 2.32 | 2.64 | 1.51 | 1.26 |
5.22 | 0.84 | 1.88 | 3.85 | 0.8 | 1.02 | |
5.77 | 0.88 | 1.65 | 6.85 | 0.81 | 0.56 | |
5.26 | 0.69 | 2.22 | 6.95 | 0.59 | 0.74 | |
3.64 | 1.24 | 1.91 | 5.25 | 0.73 | 0.82 | |
4.67 | 1.04 | 1.74 | 6.56 | 0.66 | 0.71 | |
Average | 4.67 | 0.88 | 1.89 | 5.57 | 0.76 | 0.8 |
Maximum | 6.82 | 1.21 | 2.35 | 6.95 | 0.95 | 1.26 |
Minimum | 1.32 | 0.73 | 1.52 | 2.64 | 0.59 | 0.56 |
ITAE | ITAE | |||||
2.35 | 1.35 | 2.63 | 1.23 | 1.16 | 2.16 | |
2.58 | 1.61 | 2.03 | 1.90 | 0.57 | 2.71 | |
2.41 | 1.78 | 1.96 | 2.28 | 2.17 | 0.65 | |
1.23 | 1.93 | 3.46 | 3.70 | 0.006 | 5.55 | |
GA | 2.3 | 1.28 | 2.8 | 1.99 | 1.19 | 1.34 |
1.04 | 2.03 | 3.82 | 1.02 | 2.066 | 1.50 | |
1.78 | 0.99 | 4.47 | 2.08 | 1.80 | 0.85 | |
1.39 | 2.26 | 2.65 | 0.66 | 0.79 | 5.41 | |
0.96 | 2.6 | 3.28 | 3.23 | 1.86 | 0.53 | |
2.31 | 1.94 | 1.89 | 1.83 | 1.75 | 0.99 | |
Average | 1.77 | 1.82 | 2.9 | 1.99 | 1.32 | 2.17 |
Maximum | 2.58 | 2.6 | 4.47 | 3.7 | 2.17 | 5.55 |
Minimum | 0.96 | 0.99 | 1.89 | 0.66 | 0.006 | 0.53 |
ITAE | ITAE | |||||
5.55 | 0.93 | 1.61 | 1.61 | 0.78 | 2.43 | |
4.04 | 1.05 | 1.97 | 5.26 | 0.40 | 1.36 | |
3.30 | 1.38 | 1.85 | 5.49 | 1.55 | 1.46 | |
2.12 | 1.06 | 3.59 | 1.40 | 0.71 | 2.98 | |
5.53 | 0.93 | 1.62 | 1.78 | 0.84 | 2.06 | |
BAS | 3.88 | 0.7 | 2.95 | 4.19 | 0.41 | 1.66 |
2.14 | 1.52 | 2.56 | 2.92 | 0.86 | 1.24 | |
4.66 | 0.54 | 3.08 | 2.32 | 0.74 | 1.78 | |
2.45 | 1.94 | 1.78 | 1.79 | 0.72 | 2.35 | |
5.38 | 0.76 | 2.01 | 3.84 | 0.67 | 1.19 | |
Average | 3.90 | 1.11 | 2.33 | 3.06 | 0.77 | 1.85 |
Maximum | 5.55 | 1.94 | 3.59 | 5.49 | 1.55 | 2.98 |
Minimum | 2.12 | 0.54 | 1.61 | 1.40 | 0.40 | 1.19 |
p–value | 0.006 | 0.03 |
NL | NM | ZE | PM | PL | ||
---|---|---|---|---|---|---|
s | ||||||
NL | PL | PL | ZE | PS | PS | |
NM | PL | PB | ZE | PS | PS | |
ZE | PB | PM | ZE | PM | PM | |
lPM | PM | PM | PS | PB | PL | |
PL | PL | PS | PS | PB | PL |
Hip | Knee | |||||
---|---|---|---|---|---|---|
ITAE | ITAE | |||||
5.93 | 6.11 | 0.15 | 0.66 | 0.72 | 0.15 | |
7.15 | 7.33 | 0.21 | 0.48 | 0.54 | 0.092 | |
0.079 | 0.25 | 0.073 | 0.52 | 0.59 | 0.091 | |
0.67 | 0.85 | 0.061 | 0.38 | 0.44 | 0.06 | |
PSO | 6.92 | 7.11 | 0.2 | 0.67 | 0.74 | 0.15 |
1.56 | 1.74 | 0.070 | 0.2 | 0.26 | 0.057 | |
3.32 | 3.49 | 0.094 | 0.66 | 0.73 | 0.14 | |
1.46 | 1.60 | 0.068 | 0.53 | 0.59 | 0.091 | |
4.12 | 4.30 | 0.10 | 0.58 | 0.65 | 0.11 | |
4.2 | 4.47 | 0.11 | 0.38 | 0.44 | 0.066 | |
Average | 3.54 | 3.61 | 0.114 | 0.506 | 0.59 | 0.104 |
Maximum | 7.15 | 7.33 | 0.21 | 0.67 | 0.74 | 0.15 |
Minimum | 0.079 | 0.25 | 0.061 | 0.2 | 0.26 | 0.057 |
ITAE | ITAE | |||||
9.47 | 9.65 | 0.46 | 0.65 | 0.72 | 0.142 | |
7.89 | 8.07 | 0.24 | 0.074 | 0.141 | 0.04 | |
0.82 | 0.89 | 0.26 | 1.13 | 1.2 | 1.91 | |
3.92 | 4.11 | 0.10 | 0.17 | 0.23 | 0.043 | |
GA | 0.63 | 0.89 | 0.062 | 0.53 | 0.60 | 0.091 |
1.60 | 1.79 | 0.076 | 0.076 | 0.14 | 0.0407 | |
1.47 | 1.65 | 0.069 | 0.98 | 1.04 | 0.55 | |
0.49 | 0.55 | 0.095 | 0.65 | 0.72 | 0.142 | |
5.91 | 6.09 | 0.15 | 0.60 | 0.67 | 0.12 | |
9.23 | 9.41 | 0.43 | 0.024 | 0.091 | 0.049 | |
Average | 4.143 | 3.74 | 0.168 | 0.55 | 0.6 | 0.34 |
Maximum | 9.47 | 9.65 | 0.46 | 1.13 | 1.2 | 1.91 |
Minimum | 0.49 | 0.55 | 0.062 | 0.024 | 0.091 | 0.04 |
5.26 | 5.44 | 0.13 | 0.79 | 0.85 | 0.33 | |
6.81 | 6.99 | 0.20 | 0.86 | 0.93 | 0.33 | |
8.21 | 8.40 | 0.30 | 0.88 | 0.94 | 0.35 | |
7.07 | 7.25 | 0.21 | 0.94 | 1.01 | 0.48 | |
BAS | 7.04 | 7.22 | 0.20 | 0.68 | 0.75 | 0.21 |
9.20 | 9.38 | 0.43 | 0.76 | 0.85 | 0.22 | |
8.10 | 8.31 | 0.41 | 0.94 | 1.01 | 0.48 | |
7.38 | 7.55 | 0.25 | 0.90 | 0.97 | 0.43 | |
6.01 | 6.18 | 0.23 | 0.93 | 1.00 | 0.45 | |
5.75 | 5.94 | 0.19 | 0.95 | 1.02 | 0.50 | |
Average | 7.08 | 7.26 | 0.22 | 0.86 | 0.92 | 0.36 |
Maximum | 9.20 | 9.38 | 0.43 | 0.95 | 1.02 | 0.50 |
Minimum | 7.08 | 5.44 | 0.13 | 0.68 | 0.75 | 0.21 |
p-value | 0.05 | 0.18 |
Strategies | Joints | Left | Right | ||||
---|---|---|---|---|---|---|---|
LAC | Hip | 0.086 | 0.041 | 0.045 | 0.84 | 0.040 | 0.042 |
Knee | 0.10 | 0.054 | 0.058 | 0.14 | 0.044 | 0.060 | |
SFLC | Hip | 0.062 | 0.028 | 0.039 | 0.060 | 0.024 | 0.035 |
Knee | 0.078 | 0.038 | 0.047 | 0.086 | 0.024 | 0.041 | |
LASFC | Hip | 0.0477 | 0.013 | 0.029 | 0.042 | 0.01 | 0.030 |
Knee | 0.067 | 0.021 | 0.035 | 0.074 | 0.013 | 0.037 |
Approach Name | Current Study | PSO-PID [36] | NN [37] | FLC [30] |
---|---|---|---|---|
Type of tuning | LASFC | PSO | N/A | PSO |
System model | 4-DoF | 2-DoF | 2-DoF | 2-DoF |
Population size | 40 | 20 | N/A | 20 |
No. of iterations | 400 | 100 | N/A | 200 |
No. of design variables | 2 | 3 | N/A | 3 |
IAE (rad) | 0.144 (left hip) | N/A | 0.9942 (hip) | 0.299 (hip) |
0.182 (left knee) | N/A | 0.809 (knee) | 0.281 (hip) | |
RMSE (rad) | 0.029 (left hip) | 0.11 (hip) | N/A | N/A |
0.035 (left knee ) | 0.045 (knee) | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amiri, M.S.; Ramli, R.; Aliman, N. Adaptive Swarm Fuzzy Logic Controller of Multi-Joint Lower Limb Assistive Robot. Machines 2022, 10, 425. https://doi.org/10.3390/machines10060425
Amiri MS, Ramli R, Aliman N. Adaptive Swarm Fuzzy Logic Controller of Multi-Joint Lower Limb Assistive Robot. Machines. 2022; 10(6):425. https://doi.org/10.3390/machines10060425
Chicago/Turabian StyleAmiri, Mohammad Soleimani, Rizauddin Ramli, and Norazam Aliman. 2022. "Adaptive Swarm Fuzzy Logic Controller of Multi-Joint Lower Limb Assistive Robot" Machines 10, no. 6: 425. https://doi.org/10.3390/machines10060425
APA StyleAmiri, M. S., Ramli, R., & Aliman, N. (2022). Adaptive Swarm Fuzzy Logic Controller of Multi-Joint Lower Limb Assistive Robot. Machines, 10(6), 425. https://doi.org/10.3390/machines10060425