C60- and CdS-Co-Modified Nano-Titanium Dioxide for Highly Efficient Photocatalysis and Hydrogen Production
<p>(<b>a</b>) XRD patterns and (<b>b</b>) UV–Vis diffuse reflectance spectra of P25, CdS, CdS-C<sub>60</sub>, CdS-TiO<sub>2</sub>, and CdS-C<sub>60</sub>/TiO<sub>2</sub>. Energy-Dispersive X-ray (EDX) elemental microanalysis of (<b>c</b>) CdS, (<b>d</b>) CdS-TiO<sub>2</sub>, (<b>e</b>) CdS-C<sub>60</sub>/TiO<sub>2</sub>.</p> "> Figure 2
<p>(<b>a</b>) FT–IR spectra of P25, pristine TiO<sub>2</sub>, CdS, (<b>b</b>) CdS-C<sub>60</sub>, CdS-TiO<sub>2</sub>, and CdS-C<sub>60</sub>-TiO<sub>2</sub>.</p> "> Figure 3
<p>Spectrum of adsorption of MG solution in the presence of (<b>a</b>) CdS; (<b>b</b>) CdS-TiO<sub>2</sub>; (<b>c</b>) CdS-C<sub>60</sub>; and (<b>d</b>) CdS-C<sub>60</sub>/TiO<sub>2</sub> under different irradiation times when exposed to halogen tungsten lamp. For A–G, each absorbance spectrum was recorded over a 5 min interval; for G–J, each absorbance spectrum was recorded over a 10 min interval; for J–L, each absorbance spectrum was recorded over a 30 min interval with visible light illumination. (<b>e</b>) Absorbance variations as a function of irradiation time (<b>f</b>), ln (c<sub>0</sub>/c), and the linear of control for P25, CdS, CdS-C<sub>60</sub>, CdS-TiO<sub>2</sub>, CdS-C<sub>60</sub>/TiO<sub>2</sub> in MG deterioration after 120 min exposure to radiation at ambient temperature. [MG] = 4 mg/L; [P25] (CdS, CdS-C<sub>60</sub>, CdS-TiO<sub>2</sub>, CdS-C<sub>60</sub>/TiO<sub>2</sub>) = 0.6 g/L.</p> "> Figure 4
<p>(<b>a</b>) Several kinds of hydrogen production with a time change map; (<b>b</b>) different catalysts per hour of hydrogen production.</p> "> Figure 5
<p>The photodegradation mechanism schematic for CdS-C<sub>60</sub>-TiO<sub>2</sub>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, Q.; Yuan, H.; Du, J.; Ming, M.; Yang, S.; Chen, Y.; Lei, J.; Han, Z. Photocatalytic CO2 reduction with aminoanthraquinone organic dyes. Nat. Commun. 2023, 14, 1087. [Google Scholar] [CrossRef]
- Huang, W.; Su, C.; Zhu, C.; Bo, T.; Zuo, S.; Zhou, W.; Ren, Y.; Zhang, Y.; Zhang, J.; Rueping, M.; et al. Isolated electron trap-induced charge accumulation for efficient photocatalytic hydrogen production. Angew. Chem. Int. Ed. 2023, 62, e202304634. [Google Scholar] [CrossRef]
- Barrocas, B.T.; Ambroová, N.; Koí, K. Photocatalytic reduction of carbon dioxide on TiO2 heterojunction photocatalysts—A review. Materials 2022, 15, 967. [Google Scholar] [CrossRef]
- Singh, V.; Rao, A.; Tiwari, A.; Yashwanth, P.; Lal, M.; Dubey, U.; Aich, S.; Roy, B. Study on the effects of Cl and F doping in TiO2 powder synthesized by a sol-gel route for biomedical applications. J. Phys. Chem. Solids 2019, 134, 262–271. [Google Scholar] [CrossRef]
- Aich, S.; Mishra, M.K.; Sekhar, C.; Satapathy, D.; Roy, B. Synthesis of Al-doped nano Ti-O scaffolds using a hydrothermal route on titanium foil for biomedical applications. Mater. Lett. 2016, 178, 135–139. [Google Scholar] [CrossRef]
- Caglar, A.; Aktas, N.; Kivrak, H. The role and effect of CdS-based TiO2 photocatalysts enhanced with a wetness impregnation method for efficient photocatalytic glucose electrooxidation. Surf. Interfaces 2022, 33, 102250. [Google Scholar] [CrossRef]
- Chen, W.; Tian, Y.; Wang, X.; Ma, R.; Ding, H.; Zhang, H. Preparation and characterization of Zr-containing silica residue purification loaded nano-TiO2 composite photocatalysts. Chem. Phys. 2023, 570, 111889. [Google Scholar] [CrossRef]
- Chen, B.C.; Li, P.P.; Wang, B.; Wang, Y.D. Flame-annealed porous TiO2/CeO2 nanosheets for enhenced CO gas sensors. Appl. Surf. Sci. 2022, 593, 153418. [Google Scholar] [CrossRef]
- Chen, Y.J.; Luo, X.; Luo, Y.; Xu, P.W.; He, J.; Jiang, L.; Li, J.J.; Yan, Z.Y.; Wang, J.Q. Efficient charge carrier separation in l-alanine acids derived N-TiO2 nanospheres: The role of oxygen vacancies in tetrahedral Ti4+ sites. Nanomaterials 2019, 9, 698. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Liu, Y.; Zhao, G.; Chen, J.H.; He, S.F.; Zhu, Y.C.; Chai, B.; Ren, Z.D. Preparation of electrolyzed oxidizing water by TiO2 doped IrO2-Ta2O5 electrode with high selectivity and stability for chlorine evolution. J. Electroanal. Chem. 2019, 832, 459–466. [Google Scholar] [CrossRef]
- Li, S.Q.; Li, J.Z.; Zhang, H.X.; Luo, B.; Cai, H.; Nie, S.X.; Sha, J.L. Ultraviolet-light-driven electricity generation by a TiO2/graphene composite in water. ACS Mater. Lett. 2023, 5, 2862–2869. [Google Scholar] [CrossRef]
- Li, G.Q.; Xu, T.; He, R.F.; Li, C.P.; Bai, J. Hollow cadmium sulfide tubes with novel morphologies for enhanced stability of the photocatalytic hydrogen evolution. Appl. Surf. Sci. 2019, 495, 143642. [Google Scholar] [CrossRef]
- Goud, B.S.; Suresh, Y.; Annapurna, S.; Singh, A.K.; Bhikshamaiah, G. Green synthesis and characterization of cadmium sulphide nanoparticles. Mater. Today Proc. 2016, 3, 4003–4008. [Google Scholar] [CrossRef]
- Jang, J.S.; Kim, H.G.; Joshi, U.A.; Jang, J.W.; Lee, J.S. Fabrication of CdS nanovires decorated with TiO2 nanopartieles for photocatalytic hydrogen production under visible light irradiation. Int. J. Hydrogen Energ. 2008, 33, 5975–5980. [Google Scholar] [CrossRef]
- Ma, J.Y.; An, Z.H.; Zhang, W.W.; Shen, J.; Qi, Y.L.; Chen, D.H. TiO2/CdS composite photocathode improves the performance and degradation of wastewater in microbial fuel cells. Anal. Sci. Adv. 2022, 3, 188–197. [Google Scholar] [CrossRef]
- Huo, G.N.; Zhang, S.S.; Li, Y.L.; Li, J.X.; Zhao, Y.; Huang, W.P.; Zhang, S.M.; Zhu, B.L. CdS-modified TiO2 nanotubes with heterojunction structure: A photoelectrochemical sensor for glutathione. Nanomaterials 2023, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Li, S.H.; Hui, Y.; Wu, B.S.; Chen, Z.C.; Yun, D.Q.; Deng, L.L.; Zhang, M.L.; Mao, B.W.; Xie, S.Y.; et al. Star-like hexakis[di(ethoxycarbonyl)methano]-C60 with higher electron mobility: An unexpected electron extractor interfaced in photovoltaic perovskites. Nano Energy 2020, 774, 104859. [Google Scholar] [CrossRef]
- Zieleniewska, A.; Lodermeyer, F.; Rotha, A.; Guldi, D.M. Fullerenes-how 25 years of charge transfer chemistry have shaped our understanding of (interfacial) interactions. Chem. Soc. Rev. 2018, 47, 702–714. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Zhang, Z.; Zhao, C.; Wang, J.; Li, W. Fullerene as an additive for increasing the efficiency of organic solar cells to more than 17%. J. Colloid Interf. Sci. 2021, 601, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wei, Z.Y.; Guan, Z.H.; Shan, N.Y.; Zhao, Y.; Liu, F.; Fu, L.L.; Huang, Z.P.; Humphrey, M.G.; Zhang, C. Covalent chemical functionalization of Ti3C2Tx MXene nanosheets with fullerenes C60 and C70 for enhanced nonlinear optical limiting. J. Mater. Chem. C 2023, 11, 7331–7344. [Google Scholar] [CrossRef]
- Kang, S.; Bozhilov, K.; Myung, N.; Mulchandani, A.; Chen, W. Microbial Synthesis of CdS Nanocrystals in Genetically Engineered E. coli. Angew. Chem. Int. Ed. 2008, 47, 5186–5189. [Google Scholar] [CrossRef]
- Xu, M.; Kang, Y.; Jiang, L.; Jiang, L.; Tremblay, P.; Zhang, T. The one-step hydrothermal synthesis of CdS nanorods modified with carbonized leaves from Japanese raisin trees for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2022, 47, 15516–15527. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Y.J.; Guo, X.; Jin, Z.L. Design and synthesis of ZnCo2O4/CdS for substantially improved photocatalytic hydrogen production. Front. Chem. Sci. Eng. 2023, 17, 606–616. [Google Scholar] [CrossRef]
- Li, J.L.; Xu, X.T.; Liu, X.J.; Qin, W.; Wang, M.; Pan, L.K. Metal-organic frameworks derived cake-like anatase/rutile mixed phase TiO2 for highly efficient photocatalysis. J. Alloys Compd. 2017, 690, 640–646. [Google Scholar] [CrossRef]
- Zhang, K.L.; Liu, C.M.; Huang, F.Q.; Zheng, C.; Wang, W.D. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B Environ. 2006, 68, 125–130. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, J.W. Modulation of thermal conductivity of single-walled carbon nanotubes by fullerene encapsulation: The effect of vacancy defects. Phys. Chem. Chem. Phys. 2023, 11, 7734–7740. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.R.; Jia, L.B.; Chen, M.Q.; Li, X.C.; Su, Z.H.; Shang, Y.B.; Jiang, X.F.; Gao, X.Y.; Chen, T.; Wang, M.T.; et al. An improbable amino-functionalized fullerene spacer enables 2D/3D hybrid perovskite with enhanced electron transport in solar cells. Adv. Funct. Mater. 2022, 32, 2201374. [Google Scholar] [CrossRef]
- Brik, M.G.; Srivastava, A.M.; Popov, A.I. A few common misconceptions in the interpretation of experimental spectroscopic data. Opt. Mater. 1992, 32, 249–253. [Google Scholar] [CrossRef]
- Zhou, X.A.; Ye, S.T.; Zhao, S.F.; Song, H.H.; Gong, H.T.; Fan, S.R.; Liu, M.J.; Wang, M.L.; Zhou, W.H.; Liu, J.J.; et al. Unraveling structure sensitivity in the photocatalytic dehydrogenative C-C coupling of acetone to 2,5-Hexanedione over Pt/TiO2 catalysts. ACS Catal. 2023, 13, 11825–11833. [Google Scholar] [CrossRef]
- Hu, S.; Qiao, P.Z.; Zhang, L.P.; Jiang, B.J.; Gao, Y.T.; Hou, F.; Wu, B.G.; Li, Q.; Jiang, Y.; Tian, C.G.; et al. Assembly of TiO2 ultrathin nanosheets with surface lattice distortion for solar-light-driven photocatalytic hydrogen evolution. Appl. Catal. B 2018, 239, 317–323. [Google Scholar] [CrossRef]
- Sambur, J.; Brgoch, J. Unveiling the hidden influence of defects via experiment and data science. Chem. Mater. 2023, 35, 7351–7354. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Arandiyan, H.; Yang, H.; Bai, L.; Mujtaba, J.; Wang, Q.; Liu, S.; Sun, H. Uniform Fe3O4 microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries. Appl. Surf. Sci. 2016, 389, 240–246. [Google Scholar] [CrossRef]
- Rahmati, M.S.; Fazaeli, R.; Saravani, M.G.; Ghiasi, R. Cu–curcumin/MCM-41 as an efficient catalyst for in situ conversion of carbazole to fuel oxygenates: A DOE approach. J. Nanostruct. Chem. 2022, 12, 307–327. [Google Scholar] [CrossRef]
- Yan, J.; Liu, X.L.; Wang, X.T.; Wang, L.J.; Weng, W.S.; Yu, X.T.; Xing, G.B.; Xie, J.; Lu, C.; Luo, Y.; et al. Influence of nano-attapulgite on compressive strength and microstructure of recycled aggregate concrete. Cem. Concr. Comp. 2022, 134, 104788. [Google Scholar] [CrossRef]
- Kanjan, N.; Laokul, P.; Maiaugree, W. Photocatalytic activity of nanocrystalline Fe3+-doped anatase TiO2 hollow spheres in a methylene blue solution under visible-light irradiation. J. Mater. Sci. Mater. Electron. 2022, 33, 4659–4680. [Google Scholar] [CrossRef]
- Mohajernia, S.; Andryskova, P.; Zoppellaro, G.; Kment, S.; Zboril, R.; Schmidt, J.; Schmuki, P. Influence of Ti3+ defect-type on heterogeneous photocatalytic H2 evolution activity of TiO2. J. Mater. Chem. A. 2020, 8, 1432–1442. [Google Scholar] [CrossRef]
- Belghiti, M.; Tanji, K.; El Mersly, L.; Lamsayety, I.; Ouzaouit, K.; Faqir, H.; Benzakour, I.; Rafqah, S.; Outzourhit, A. Fast and non-selective photodegradation of basic yellow malachite green, tetracycline, and sulfamethazine using a nanosized ZnO synthesized from zinc ore. React. Kinet. Mech. Cat. 2022, 135, 2265–2278. [Google Scholar] [CrossRef]
- Causa, M.; Risse, J.D.J.; Scarongella, M.; Brauer, J.C.; Domingo, E.B.; Moser, J.E.; Stingelin, N.; Banerji, N. The fate of electron-hole pairs in polymer: Fullerene blends for organic photovoltaics. Nat. Commun. 2016, 7, 12556. [Google Scholar] [CrossRef]
- Katal, R.; Farahan, M.H.D.A.; Hu, J.Y. Degradation of acetaminophen in a photocatalytic (batch and continuous system) and photoelectrocatalytic process by application of faceted-TiO2. Sep. Purif. Technol. 2020, 230, 115859. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 160694. [Google Scholar] [CrossRef] [PubMed]
- Nagappagari, L.R.; Le, T.D.; Ahemad, M.J.; Oh, G.J.; Shin, G.S.; Lee, K.Y.; Yu, Y.T. Enhancement of bifunctional photocatalytic activity of boron-doped g-C3N4/SnO2 heterojunction driven by plasmonic Ag quantum dots. Mater. Today Nano 2023, 22, 100325. [Google Scholar] [CrossRef]
- Islam, M.R.; Chakraborty, A.K.; Gafur, M.A.; Rahman, M.A.; Rahman, M.H. Easy preparation of recyclable thermally stable visible-light-active graphitic-C3N4/TiO2 nanocomposite photocatalyst for efficient decomposition of hazardous organic industrial pollutants in aqueous medium. Res. Chem. Intermed. 2019, 45, 11753–11773. [Google Scholar] [CrossRef]
- Truc, N.T.T.; Pham, T.D.; Nguyen, M.V.; Thuan, D.V.; Trung, D.Q.; Thao, P.; Trang, H.T.; Nguyen, V.N.; Tran, D.T.; Minh, D.N.; et al. Advanced NiMoO4/g-C3N4 Z-scheme heterojunction photocatalyst for efficient conversion of CO2 to valuable products. J. Alloys Compd. 2020, 842, 155860. [Google Scholar] [CrossRef]
- Boettche, S.W.; Oene, S.Z.; Lonerga, M.C.; Surendranat, Y.; Ardo, S.; Broze, C.; Kempler, P.A. Potentially confusing: Potentials in electrochemistry. ACS Energy Lett. 2021, 6, 261–266. [Google Scholar] [CrossRef]
- Pasarán, A.C.; Luke, T.L.; Zarazúa, I.; Rosa, E.D.; Ramírez, R.F.; Sanal, K.C.; Ordaz, A.A. Co-sensitized TiO2 electrodes with different quantum dots for enhanced hydrogen evolution in photoelectrochemical cells. J. Appl. Electrochem. 2019, 49, 475–484. [Google Scholar] [CrossRef]
- Mao, Z.; Lin, H.; Xu, M.; Miao, J.; He, S.J.; Li, Q. Fabrication of Co-doped CdSe quantum dot-sensitized TiO2 nanotubes by ultrasound-assisted method and their photoelectrochemical properties. J. Appl. Electrochem. 2018, 48, 147–155. [Google Scholar] [CrossRef]
- Oh, W.C.; Zhang, F.J.; Chen, M.L. Preparation of MWCNT/TiO2 composites by using MWCNTs and titanium (IV) alkoxide precursors in benzene and their photocatalytic effect and bactericidal activity. Bull. Korean Chem. Soc. 2009, 30, 2637–2642. [Google Scholar]
- Li, Y.S.; Jiang, F.L.; Xiao, Q.; Li, R.; Li, K.; Zhang, M.F.; Zhang, A.Q.; Sun, S.F.; Liu, Y. Enhanced photocatalytic activities of TiO2 nanocomposites doped with water-soluble mercapto-capped CdTe quantum dots. Appl. Catal. B 2010, 101, 118–129. [Google Scholar] [CrossRef]
- AI-Ekabi, H.; Serpone, N. Kinetic studies in heterogeneous photocatalysis. 1. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over TiO2 supported on a glass matrix. J. Phys. Chem. 1988, 92, 5726–5731. [Google Scholar] [CrossRef]
- AI-Ekabi, H.; Serpone, N.; Wang, X.H.; Li, J.G.; Kamiyama, H.; Moriyoshi, Y.; Ishigaki, T. Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over Iron(III) doped TiO2 nanopowders under UV and visible light irradiation. J. Phys. Chem. B 2006, 110, 6804–6809. [Google Scholar]
- Korshin, G.; Chow, C.W.K.; Fabris, R.; Drikas, M. Absorbance spectroscopy-based examination of effects of coagulation on the reactivity of fractions of natural organic matter with varying apparent molecular weights. Water Res. 2009, 43, 1541–1548. [Google Scholar] [CrossRef] [PubMed]
- Halomoan, I.; Yulizar, Y.; Surya, R.M.; Apriandanu, D.O. Facile preparation of CuO-Gd2Ti2O7 using acmella uliginosa leaf extract for photocatalytic degradation of malachite green. Mater. Res. Bull. 2022, 150, 111726. [Google Scholar] [CrossRef]
- Jia, J.; Du, X.; Surya, R.M.; Zhang, Q.Q.; Liu, E.Z.; Fan, J. Z-scheme MgFe2O4/Bi2MoO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity for malachite green removal. Appl. Surf. Sci. 2019, 492, 527–539. [Google Scholar] [CrossRef]
- Wu, D.; Li, C.; Zhang, D.; Wang, L.; Zhang, X.; Shi, Z.; Lin, Q. Enhanced photocatalytic activity of Gd3+ doped TiO2 and Gd2O3 modified TiO2 prepared via ball milling method. J. Rare Earths 2019, 37, 845–852. [Google Scholar] [CrossRef]
- Zhang, M.F.; Liang, X.F.; Liu, Y. Co-CNT/TiO2 composites efectively improved the photocatalytic degradation of malachite green. Ionics 2022, 30, 521–527. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Liang, X.; Gao, Y.; Liu, Y. C60- and CdS-Co-Modified Nano-Titanium Dioxide for Highly Efficient Photocatalysis and Hydrogen Production. Materials 2024, 17, 1206. https://doi.org/10.3390/ma17051206
Zhang M, Liang X, Gao Y, Liu Y. C60- and CdS-Co-Modified Nano-Titanium Dioxide for Highly Efficient Photocatalysis and Hydrogen Production. Materials. 2024; 17(5):1206. https://doi.org/10.3390/ma17051206
Chicago/Turabian StyleZhang, Meifang, Xiangfei Liang, Yang Gao, and Yi Liu. 2024. "C60- and CdS-Co-Modified Nano-Titanium Dioxide for Highly Efficient Photocatalysis and Hydrogen Production" Materials 17, no. 5: 1206. https://doi.org/10.3390/ma17051206