Exploring the Moderating Role of Readers’ Perspective in Evaluations of Online Consumer Reviews
<p>Research Model.</p> "> Figure 2
<p>The Moderating Effect of RI on SC.</p> "> Figure 3
<p>The Moderating Effect of RI on RS.</p> "> Figure 4
<p>The Moderating Effect of RI on RO.</p> "> Figure 5
<p>The Moderating Effect of RI on IC.</p> "> Figure 6
<p>The Moderating Effect of SH on SC.</p> "> Figure 7
<p>The Moderating Effect of RI on AQ.</p> "> Figure 8
<p>The Moderating Effect of RI on RF.</p> "> Figure 9
<p>The Moderating Effect of RI on EC.</p> ">
Abstract
:1. Introduction
- How does the readers’ involvement moderate the effect of antecedent factors on COR?
- Will similarity evaluation between the source and the reader (homophily) moderate the source credibility effect on COR, and if yes, to what extent?
2. Background and Hypotheses Development
2.1. Studies on Review Credibility
2.2. Heuristic–Systematic Model and the Moderating Role of Reader’s Involvement
2.2.1. Argument Quality
2.2.2. Review Objectivity
2.2.3. Internal Consistency
2.2.4. Review Fluency
2.2.5. External Consistency
2.2.6. Review Sidedness
2.2.7. Perceived Source Credibility
2.3. The Moderating Role of Source Homophily
3. Methodology
3.1. Measures and Questionnaire Design
3.2. Field Data
4. Results
4.1. Measurement Model Analyses
4.2. Common Method Bias
4.3. Structural Equation Modeling Analysis
5. Discussion
Theoretical Contributions and Practical Implications
6. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Scale Development Process
Appendix B
SH | RC | SC | RS | AQ | RF | RO | RI | IC | EC | |
---|---|---|---|---|---|---|---|---|---|---|
SH | ||||||||||
RC | 0.530 | |||||||||
SC | 0.431 | 0.743 | ||||||||
RS | 0.232 | 0.260 | 0.141 | |||||||
AQ | 0.458 | 0.672 | 0.659 | 0.127 | ||||||
RF | 0.261 | 0.582 | 0.504 | 0.027 | 0.395 | |||||
RO | 0.418 | 0.603 | 0.493 | 0.237 | 0.554 | 0.363 | ||||
RI | 0.169 | 0.258 | 0.333 | 0.028 | 0.235 | 0.382 | 0.142 | |||
IC | 0.263 | 0.447 | 0.341 | 0.065 | 0.399 | 0.514 | 0.310 | 0.365 | ||
EC | 0.390 | 0.415 | 0.296 | 0.326 | 0.403 | 0.184 | 0.487 | 0.067 | 0.188 |
References
- Williams, A.D.; Tapscott, D. Wikinomics; Atlantic Books Ltd.: London, UK, 2011. [Google Scholar]
- Van Dijck, J.; Nieborg, D. Wikinomics and its discontents: A critical analysis of Web 2.0 business manifestos. New Media Soc. 2009, 11, 855–874. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Luo, X.; Xu, Y.; Warkentin, M.; Sia, C.L. Examining the moderating role of sense of membership in online review evaluations. Inf. Manag. 2015, 52, 305–316. [Google Scholar] [CrossRef]
- Abedin, E.; Mendoza, A.; Karunasekera, S. Credible vs Fake: A Literature Review on Differentiating Online Reviews based on Credibility. In Proceedings of the International Conference on Information Systems (ICIS 2020), Hyderabad, India, 13–16 December 2020. [Google Scholar]
- Baumeister, R.F.; Bratslavsky, E.; Finkenauer, C.; Vohs, K.D. Bad is stronger than good. Rev. Gen. Psychol. 2001, 5, 323–370. [Google Scholar] [CrossRef]
- Filieri, R.; McLeay, F.; Tsui, B.; Lin, Z. Consumer perceptions of information helpfulness and determinants of purchase intention in online consumer reviews of services. Inf. Manag. 2018, 55, 956–970. [Google Scholar] [CrossRef]
- Huang, Y.; Li, C.; Wu, J.; Lin, Z. Online customer reviews and consumer evaluation: The role of review font. Inf. Manag. 2018, 55, 430–440. [Google Scholar] [CrossRef]
- Siddiqui, M.; Siddiqui, U.; Khan, M.; Alkandi, I.; Saxena, A.; Siddiqui, J. Creating Electronic Word of Mouth Credibility through Social Networking Sites and Determining Its Impact on Brand Image and Online Purchase Intentions in India. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 1008–1024. [Google Scholar] [CrossRef]
- Chong, A.Y.L.; Khong, K.W.; Ma, T.; McCabe, S.; Wang, Y. Analyzing key influences of tourists’ acceptance of online reviews in travel decisions. Internet Res. 2018, 28, 564–586. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, Q.; Law, C.H.R.; Li, Y. The impact of e-word-of-mouth on the online popularity of restaurants: A comparison of consumer reviews and editor reviews. Int. J. Hosp. Manag. 2010, 29, 694–700. [Google Scholar] [CrossRef]
- Abedin, E.; Mendoza, A.; Karunasekera, S. What Makes a Review Credible? In Heuristic and Systematic Factors for the Credibility of Online Reviews; ACIS: Perth, Australia, 2019. [Google Scholar]
- Ansari, S.; Gupta, S. Customer perception of the deceptiveness of online product reviews: A speech act theory perspective. Int. J. Inf. Manag. 2021, 57, 102286. [Google Scholar] [CrossRef]
- Lee, J.; Hong, I. The Influence of Situational Constraints on Consumers’ Evaluation and Use of Online Reviews: A Heuristic-Systematic Model Perspective. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 1517–1536. [Google Scholar] [CrossRef]
- Petty, R.E.; Cacioppo, J.T. The Elaboration Likelihood Model of Persuasion. In Communication and Persuasion; Springer: Berlin/Heidelberg, Germany, 1986; pp. 1–24. [Google Scholar]
- Chaiken, S. Heuristic versus systematic information processing and the use of source versus message cues in persuasion. J. Personal. Soc. Psychol. 1980, 39, 752. [Google Scholar] [CrossRef]
- Rogers, E.M.; Bhowmik, D.K. Homophily-Heterophily: Relational Concepts for Communication Research. Public Opin. Q. 1970, 34, 523–538. [Google Scholar] [CrossRef]
- Luo, C.; Wu, J.; Shi, Y.; Xu, Y. The effects of individualism–collectivism cultural orientation on eWOM information. Int. J. Inf. Manag. 2014, 34, 446–456. [Google Scholar] [CrossRef]
- Munzel, A. Assisting consumers in detecting fake reviews: The role of identity information disclosure and consensus. J. Retail. Consum. Serv. 2016, 32, 96–108. [Google Scholar] [CrossRef]
- Cheung, C.M.-Y.; Sia, C.-L.; Kuan, K.K. Is this review believable? A study of factors affecting the credibility of online consumer reviews from an ELM perspective. J. Assoc. Inf. Syst. 2012, 13, 618. [Google Scholar] [CrossRef] [Green Version]
- Abedin, E.; Mendoza, A.; Karunasekera, S. Towards a Credibility Analysis Model for Online Reviews; PACIS: Xi’an, China, 2019. [Google Scholar]
- Barbado, R.; Araque, O.; Iglesias, C.A. A framework for fake review detection in online consumer electronics retailers. Inf. Process. Manag. 2019, 56, 1234–1244. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, E.; Bachenko, J.; Fornaciari, T. Automatic Detection of Verbal Deception. Synth. Lect. Hum. Lang. Technol. 2015, 8, 1–119. [Google Scholar] [CrossRef]
- Hu, N.; Bose, I.; Koh, N.S.; Liu, L. Manipulation of online reviews: An analysis of ratings, readability, and sentiments. Decis. Support Syst. 2012, 52, 674–684. [Google Scholar] [CrossRef]
- Plotkina, D.; Munzel, A.; Pallud, J. Illusions of truth—Experimental insights into human and algorithmic detections of fake online reviews. J. Bus. Res. 2020, 109, 511–523. [Google Scholar] [CrossRef]
- Banerjee, S.; Bhattacharyya, S.; Bose, I. Whose online reviews to trust? Understanding reviewer trustworthiness and its impact on business. Decis. Support Syst. 2017, 96, 17–26. [Google Scholar] [CrossRef]
- Kudugunta, S.; Ferrara, E. Deep neural networks for bot detection. Inf. Sci. 2018, 467, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhou, L.; Kehoe, J.L.; Kilic, I.Y. What Online Reviewer Behaviors Really Matter? Effects of Verbal and Nonverbal Behaviors on Detection of Fake Online Reviews. J. Manag. Inf. Syst. 2016, 33, 456–481. [Google Scholar] [CrossRef]
- Jindal, N.; Liu, B. Analyzing and Detecting Review Spam. In Proceedings of the Seventh IEEE International Conference on Data Mining (ICDM 2007), Omaha, NE, USA, 28–31 October 2007; pp. 547–552. [Google Scholar]
- Filieri, R.; Hofacker, C.; Alguezaui, S. What makes information in online consumer reviews diagnostic over time? The role of review relevancy, factuality, currency, source credibility and ranking score. Comput. Hum. Behav. 2018, 80, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Mafe, C.; Chatzipanagiotou, K.; Curras-Perez, R. The role of emotions and conflicting online reviews on consumers’ purchase intentions. J. Bus. Res. 2018, 89, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Eagly, A.H.; Chaiken, S. The Psychology of Attitudes; Harcourt Brace Jovanovich College Publishers: San Diego, CA, USA, 1993. [Google Scholar]
- Zhang, K.Z.; Zhao, S.J.; Cheung, C.; Lee, M.K.O. Examining the influence of online reviews on consumers’ decision-making: A heuristic–systematic model. Decis. Support Syst. 2014, 67, 78–89. [Google Scholar] [CrossRef]
- Watts, S.A.; Zhang, W. Capitalizing on content: Information adoption in two online communities. J. Assoc. Inf. Syst. 2008, 9, 3. [Google Scholar] [CrossRef]
- Stacks, D.W.; Salwen, M.B.; Eichhorn, K.C. An Integrated Approach to Communication Theory and Research; Routledge: Abingdon, UK, 2019. [Google Scholar]
- Slater, M.D.; Rouner, D. How Message Evaluation and Source Attributes May Influence Credibility Assessment and Belief Change. Journal. Mass Commun. Q. 1996, 73, 974–991. [Google Scholar] [CrossRef]
- Kim, S.J.; Maslowska, E.; Malthouse, E.C. Understanding the effects of different review features on purchase probability. Int. J. Advert. 2017, 37, 29–53. [Google Scholar] [CrossRef]
- Ketron, S. Investigating the effect of quality of grammar and mechanics (QGAM) in online reviews: The mediating role of reviewer crediblity. J. Bus. Res. 2017, 81, 51–59. [Google Scholar] [CrossRef]
- Cox, D.; Cox, J.G.; Cox, A.D. To Err is human? How typographical and orthographical errors affect perceptions of online reviewers. Comput. Hum. Behav. 2017, 75, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, N. hapter 14: Feelings-as-Information Theory. In Handbook of Theories of Social Psychology; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2011; Volume 1, pp. 289–308. [Google Scholar]
- Brown, J.J.; Reingen, P.H. Social Ties and Word-of-Mouth Referral Behavior. J. Consum. Res. 1987, 14, 350–362. [Google Scholar] [CrossRef]
- Lawler, E.J.; Yoon, J. Commitment in Exchange Relations: Test of a Theory of Relational Cohesion. Am. Sociol. Rev. 1996, 61, 89. [Google Scholar] [CrossRef]
- Aghakhani, N.; Oh, O.; Gregg, D.G.; Karimi, J. Online Review Consistency Matters: An Elaboration Likelihood Model Perspective. Inf. Syst. Front. 2020, 23, 1287–1301. [Google Scholar] [CrossRef]
- Cheung, M.Y.; Luo, C.; Sia, C.L.; Chen, H. Credibility of Electronic Word-of-Mouth: Informational and Normative Determinants of On-line Consumer Recommendations. Int. J. Electron. Commer. 2009, 13, 9–38. [Google Scholar] [CrossRef]
- Xu, Q. Should I trust him? The effects of reviewer profile characteristics on eWOM credibility. Comput. Hum. Behav. 2014, 33, 136–144. [Google Scholar] [CrossRef]
- Festinger, L. A Theory of Social Comparison Processes. Hum. Relat. 1954, 7, 117–140. [Google Scholar] [CrossRef]
- Zhang, Y. Responses to Humorous Advertising: The Moderating Effect of Need for Cognition. J. Advert. 1996, 25, 15–32. [Google Scholar] [CrossRef]
- Zhao, K.; Stylianou, A.C.; Zheng, Y. Sources and impacts of social influence from online anonymous user reviews. Inf. Manag. 2018, 55, 16–30. [Google Scholar] [CrossRef]
- Park, D.-H.; Lee, J. eWOM overload and its effect on consumer behavioral intention depending on consumer involvement. Electron. Commer. Res. Appl. 2008, 7, 386–398. [Google Scholar] [CrossRef]
- Ohanian, R. Construction and Validation of a Scale to Measure Celebrity Endorsers’ Perceived Expertise, Trustworthiness, and Attractiveness. J. Advert. 1990, 19, 39–52. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis: A Global Perspective; Pearson: Upper Saddle River, NJ, USA, 2010; Volume 7. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Voorhees, C.M.; Brady, M.K.; Calantone, R.J.; Ramirez, E. Discriminant validity testing in marketing: An analysis, causes for concern, and proposed remedies. J. Acad. Mark. Sci. 2016, 44, 119–134. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Mena, J.A. An assessment of the use of partial least squares structural equation modeling in marketing research. J. Acad. Mark. Sci. 2012, 40, 414–433. [Google Scholar] [CrossRef]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for The Behavioral Sciences; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Aiken, L.S.; West, S.G.; Reno, R.R. Multiple Regression: Testing and Interpreting Interactions; Sage: Thousand Oaks, CA, USA, 1991. [Google Scholar]
- Thomas, M.-J.; Wirtz, B.W.; Weyerer, J.C. Determinants of online review credibility and its impact on consumers’purchase intention. J. Electron. Commer. Res. 2019, 20, 1–20. [Google Scholar]
- Chaiken, S.; Maheswaran, D. Heuristic processing can bias systematic processing: Effects of source credibility, argument ambiguity, and task importance on attitude judgment. J. Personal. Soc. Psychol. 1994, 66, 460. [Google Scholar] [CrossRef]
- Shan, Y. How credible are online product reviews? The effects of self-generated and system-generated cues on source credibility evaluation. Comput. Hum. Behav. 2016, 55, 633–641. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
Construct | Items | Supporting References |
---|---|---|
Argument Quality | 1. The review arguments are convincing | [3,46] |
2. The review arguments are persuasive | ||
3. The review arguments are reasonable | ||
Internal Consistency | 1. In this review, the comment and star rating match each other | This study |
2. In this review, the arguments are consistent with each other | ||
3. In this review, there is no conflict within its parts | ||
Review Fluency | 1. This review is easy to read | [9,47] |
2. This review is understandable | ||
3. This review is easy to comprehend | ||
External Consistency | 1. The comments made in this review are consistent with other reviews | [19] |
2. The comments made in this review are similar to other reviews | ||
Review Objectivity | 1. The argument of this review is unemotional | [29,48] |
2. This review is objective | ||
3. This review is based on facts | ||
Review Sidedness | 1. This review includes both pros and cons on the discussed product/service | [19,43] |
2. This review includes only one-sided comments (positive or negative) | ||
3. This review includes both positive and negative comments | ||
Perceived Source Credibility | 1. The writer (reviewer) of this review is credible | [19,49] |
2. The writer (reviewer) of this review is reliable | ||
3. The writer (reviewer) of this review is trustworthy | ||
Reader’s Involvement | 1. How much effort did you put into evaluating the given information? | [29] |
2. Did you think deeply about the information contained in online reviews? | ||
3. How informed are you on the subject matter of this review | ||
Source Homophily | 1. The reviewer has the same opinions as I do | [6] |
2. The reviewer has the same viewpoints as I do | ||
3. The reviewer has the same preferences as I do | ||
Perceived Review Credibility | 1. This review is believable | [3,19] |
2. This review is trustworthy | ||
3. This review is credible | ||
4. This review is accurate |
Frequency | Percent | ||
---|---|---|---|
Gender | Male | 213 | 50.1 |
Female | 212 | 49.9 | |
Age range | <30 | 131 | 30.8 |
30–40 | 147 | 34.6 | |
40+ | 147 | 34.6 | |
Education | Less than high school | 2 | 0.5 |
High school graduate | 84 | 19.8 | |
College | 104 | 24.5 | |
Bachelor’s degree | 178 | 41.9 | |
Master’s degree | 53 | 12.5 | |
Doctorate | 4 | 0.9 |
Attributes | Abbreviations | Items | α | CR | AVE | Factor Loading |
---|---|---|---|---|---|---|
External Consistency | EC | EC1 | 0.959 | 0.959 | 0.921 | 0.975 |
EC2 | 0.934 | |||||
Argument Quality | AQ | AQ1 | 0.933 | 0.934 | 0.825 | 0.934 |
AQ2 | 0.925 | |||||
AQ3 | 0.803 | |||||
Source Credibility | SC | SC1 | 0.948 | 0.948 | 0.859 | 0.880 |
SC2 | 0.896 | |||||
SC3 | 0.930 | |||||
Review Credibility | RC | RC1 | 0.961 | 0.961 | 0.861 | 0.925 |
RC2 | 0.855 | |||||
RC3 | 0.949 | |||||
RC4 | 0.836 | |||||
Review Sidedness | RS | RS1 | 0.924 | 0.926 | 0.806 | 0.966 |
RS2 | 0.839 | |||||
RS3 | 0.886 | |||||
Review Objectivity | RO | RO1 | 0.899 | 0.905 | 0.761 | 0.794 |
RO2 | 0.940 | |||||
RO3 | 0.855 | |||||
Review Fluency | RF | RF1 | 0.906 | 0.907 | 0.765 | 0.806 |
RF2 | 0.864 | |||||
RF3 | 0.932 | |||||
Internal Consistency | IC | IC1 | 0.872 | 0.876 | 0.702 | 0.780 |
IC2 | 0.909 | |||||
IC3 | 0.811 | |||||
Readers’ Involvement | RI | RI1 | 0.889 | 0.894 | 0.740 | 0.894 |
RI2 | 0.902 | |||||
RI3 | 0.778 | |||||
Source Homophily | SH | SH1 | 0.930 | 0.931 | 0.818 | 0.858 |
SH2 | 0.923 | |||||
SH3 | 0.913 |
SH | RC | SC | RS | AQ | RF | RO | RI | IC | EC | |
---|---|---|---|---|---|---|---|---|---|---|
SH | 0.905 | |||||||||
RC | 0.530 *** | 0.928 | ||||||||
SC | 0.440 *** | 0.744 *** | 0.927 | |||||||
RS | 0.239 *** | 0.251 *** | 0.141 ** | 0.898 | ||||||
AQ | 0.450 *** | 0.670 *** | 0.655 *** | 0.130 * | 0.909 | |||||
RF | 0.255 *** | 0.570 *** | 0.491 *** | 0.028 | 0.384 *** | 0.875 | ||||
RO | 0.427 *** | 0.602 *** | 0.496 *** | 0.221 *** | 0.556 *** | 0.364 *** | 0.872 | |||
RI | 0.153 ** | 0.257 *** | 0.334 *** | −0.045 | 0.238 *** | 0.403 *** | 0.136 ** | 0.860 | ||
IC | 0.259 *** | 0.454 *** | 0.341 *** | −0.047 | 0.402 *** | 0.515 *** | 0.317 *** | 0.356 *** | 0.838 | |
EC | 0.386 *** | 0.411 *** | 0.296 *** | 0.326 *** | 0.399 *** | 0.178 *** | 0.474 *** | 0.048 | 0.185 *** | 0.960 |
Collinearity Statistics | ||
---|---|---|
Tolerance | VIF | |
External Consistency (EC) | 0.600 | 1.667 |
Review Objectivity (RO) | 0.478 | 2.090 |
Source Credibility (SC) | 0.364 | 2.749 |
Review Sidedness (RS) | 0.741 | 1.349 |
Argument Quality (AQ) | 0.334 | 2.998 |
Review Fluency (RF) | 0.478 | 2.090 |
Internal Consistency (IC) | 0.551 | 1.815 |
Reader’s Involvement (RI) | 0.566 | 1.766 |
Source Homophily (SH) | 0.611 | 1.637 |
Model 1 | Model 2 | Model 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
SC 1 | t | Sig. | SC 1 | t | Sig. | SC 1 | t | Sig. | |
Internal Consistency (IC) | 0.096 | 3.054 | 0.002 | 0.082 | 2.732 | 0.007 | 0.097 | 3.302 | 0.001 |
Review Objectivity (RO) | 0.155 | 4.582 | 0.000 | 0.128 | 3.952 | 0.000 | 0.123 | 3.887 | 0.000 |
Review Fluency (RF) | 0.194 | 5.891 | 0.000 | 0.189 | 5.812 | 0.000 | 0.193 | 6.107 | 0.000 |
Argument Quality (AQ) | 0.169 | 4.424 | 0.000 | 0.153 | 3.976 | 0.000 | 0.123 | 3.255 | 0.001 |
Review Sidedness (RS) | 0.122 | 4.572 | 0.000 | 0.122 | 4.713 | 0.000 | 0.099 | 3.884 | 0.000 |
Source Credibility (SC) | 0.403 | 10.880 | 0.000 | 0.462 | 12.601 | 0.000 | 0.430 | 11.842 | 0.000 |
External Consistency (EC) | 0.056 | 1.875 | 0.061 | 0.016 | 0.555 | 0.579 | 0.001 | 0.034 | 0.973 |
Reader’s Involvement (RI) | −0.037 | −1.235 | 0.218 | −0.017 | −0.582 | 0.561 | |||
RI * IC | −0.118 | −3.509 | 0.000 | −0.081 | −2.441 | 0.015 | |||
RI * RO | −0.101 | −3.268 | 0.001 | −0.096 | −3.196 | 0.002 | |||
RI * RF | −0.064 | −1.620 | 0.106 | −0.041 | −1.072 | 0.285 | |||
RI * AQ | 0.056 | 1.779 | 0.076 | 0.028 | 0.901 | 0.368 | |||
RI * RS | −0.099 | −3.567 | 0.000 | −0.073 | −2.646 | 0.008 | |||
RI * SC | 0.273 | 7.271 | 0.000 | 0.253 | 6.906 | 0.000 | |||
RI * EC | 0.056 | 1.658 | 0.098 | 0.059 | 1.804 | 0.072 | |||
Source Homophily (SH) | 0.081 | 2.875 | 0.004 | ||||||
SH * SC | −0.105 | −4.337 | 0.000 | ||||||
R2 | 0.747 | 0.792 | 0.805 | ||||||
Adjusted R2 | 0.743 | 0.784 | 0.797 | ||||||
F | 175.994 | 103.704 | 98.710 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abedin, E.; Mendoza, A.; Karunasekera, S. Exploring the Moderating Role of Readers’ Perspective in Evaluations of Online Consumer Reviews. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 3406-3424. https://doi.org/10.3390/jtaer16070184
Abedin E, Mendoza A, Karunasekera S. Exploring the Moderating Role of Readers’ Perspective in Evaluations of Online Consumer Reviews. Journal of Theoretical and Applied Electronic Commerce Research. 2021; 16(7):3406-3424. https://doi.org/10.3390/jtaer16070184
Chicago/Turabian StyleAbedin, Ehsan, Antonette Mendoza, and Shanika Karunasekera. 2021. "Exploring the Moderating Role of Readers’ Perspective in Evaluations of Online Consumer Reviews" Journal of Theoretical and Applied Electronic Commerce Research 16, no. 7: 3406-3424. https://doi.org/10.3390/jtaer16070184