Changes in EEG Alpha Activity during Attention Control in Patients: Association with Sleep Disorders
<p>(<b>a</b>) The scheme of the “10–10” EEG electrode arrangement; (<b>b</b>) Fragments of EEG signals recorded during the experimental active stage; (<b>c</b>) The time dependence of the wavelet-energy in the band <math display="inline"><semantics> <mrow> <mo>[</mo> <mn>8</mn> <mo>;</mo> <mn>12</mn> <mo>]</mo> </mrow> </semantics></math> Hz by EEG.</p> "> Figure 2
<p>(<b>a</b>) The top panel: test subject response delays decreased with experimental time, over subsequent trials to the sound stimulus <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> on experimental time <span class="html-italic">t</span>; the bottom panel: the dependence of wavelet energy <math display="inline"><semantics> <mfenced separators="" open="〈" close="〉"> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mfenced> </semantics></math> in the frequency interval of <math display="inline"><semantics> <mrow> <mo>[</mo> <mn>8</mn> <mo>;</mo> <mn>12</mn> <mo>]</mo> </mrow> </semantics></math> Hz. These dependences were calculated for test subject #7 from Group I (control group with a healthy sleep); (<b>b</b>,<b>c</b>) represent similar dependences of <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mfenced separators="" open="〈" close="〉"> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mfenced> </semantics></math> for test subject #11 from experimental Group II (with primary insomnia) and for test subject #3 from Group III (with hypersomnia), respectively. Light gray rectangles indicate CY and RCY stages (passive wakefulness of test subjects with closed eyes–initial and repeated).</p> "> Figure 3
<p>(<b>a</b>–<b>c</b>) The diagrams of energy ratio <math display="inline"><semantics> <msub> <mi>E</mi> <mrow> <mi>R</mi> <mi>C</mi> <mi>Y</mi> <mo>/</mo> <mi>C</mi> <mi>Y</mi> </mrow> </msub> </semantics></math> (<a href="#FD7-jpm-11-00601" class="html-disp-formula">7</a>) (top panel) and <math display="inline"><semantics> <msub> <mi>E</mi> <mi>A</mi> </msub> </semantics></math> (<a href="#FD8-jpm-11-00601" class="html-disp-formula">8</a>) (bottom panel) by frequency interval <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>f</mi> <mo>∈</mo> <mo>Δ</mo> <msub> <mi>f</mi> <mo>α</mo> </msub> </mrow> </semantics></math> for I, II, and III participant’s groups, respectively. The diagrams depict the following statistical characteristics of energy ratios: the first and the third quartiles (25–75%, inside the box); the median and mean (dash line and point inside the box, accordingly); 1.5 interquartile range (shown by whiskers); and outliers represented by asterisks. Light gray rectangles delineate the ranges of values representing the ratios close to one.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Materials
- Male gender, age <25 years;
- Complaints for insufficient and non-restorative sleep;
- Sleep onset disorder (>30 min to fall asleep) or sleep maintenance disorder (two or more awakenings per night of >15 min long or wake after sleep onset (WASO) time of >30 min);
- Problem incidence rate >3 nights per week;
- Problem duration >6 months.
- Beck Depression Inventory score (BDI) >13 [41];
- A score >7 on the Hospital Anxiety and Depression Scale [42];
- An apnea-hypopnea index (AHI) or periodic limb movements index (PLM) >5 or restless leg syndrome (RLS) during the polysomnography night;
- A medical or psychiatric disorder;
- Psychotropic medicine use over the last month.
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A-stage | Active experimental stage: wakefulness with periodic sound stimuli |
CY | First experimental stage of passive wakefulness with closed eyes |
RCY | Second experimental stage of passive wakefulness with closed eyes |
CWT | Continuous wavelet transform |
References
- Diagnostic and Coding Manual. International Classification of Sleep Disorders, 3rd ed.; Diagnostic and Coding Manual: Westchester, NY, USA, 2014. [Google Scholar]
- Riemann, D.; Nissen, C.; Palagini, L.; Otte, A.; Perlis, M.L.; Spiegelhalder, K. The neurobiology, investigation, and treatment of chronic insomnia. Lancet Neurol. 2015, 14, 547–558. [Google Scholar] [CrossRef]
- Edinger, J.D.; Arnedt, J.T.; Bertisch, S.M.; Carney, C.E.; Harrington, J.J.; Lichstein, K.L.; Sateia, M.J.; Troxel, W.M.; Zhou, E.S.; Kazmi, U.; et al. Behavioral and psychological treatments for chronic insomnia disorder in adults: An American Academy of Sleep Medicine systematic review, meta-analysis and GRADE assessment. J. Clin. Sleep Med. 2021, 17, 263–298. [Google Scholar] [CrossRef]
- van Straten, A.; van der Zweerde, T.; Kleiboer, A.; Cuijpers, P.; Morin, C.M.; Lancee, J. Cognitive and behavioral therapies in the treatment of insomnia: A meta-analysis. Sleep Med. Rev. 2018, 38, 3–16. [Google Scholar] [CrossRef]
- Huedo-Medina, T.B.; Kirsch, I.; Middlemass, J.; Klonizakis, M.; Siriwardena, A.N. Effectiveness of non-benzodiazepine hypnotics in treatment of adult insomnia: Meta-analysis of data submitted to the Food and Drug Administration. BMJ 2012, 345, e8343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervena, K.; Dauvilliers, Y.; Espa, F.; Touchon, J.; Matousek, M.; Billiard, M.; Besset, A. Effect of cognitive behavioural therapy for insomnia on sleep architecture and sleep EEG power spectra in psychophysiological insomnia. J. Sleep Res. 2004, 13, 385–393. [Google Scholar] [CrossRef]
- Krystal, A.D.; Edinger, J.D.; Wohlgemuth, W.K.; Marsh, G.R. NREM sleep EEG frequency spectral correlates of sleep complaints in primary insomnia subtypes. Sleep 2002, 25, 626–636. [Google Scholar]
- Nowell, P.D.; Mazumdar, S.; Buysse, D.J.; Dew, M.A.; Reynolds, C.F.; Kupfer, D.J. Benzodiazepines and zolpidem for chronic insomnia: A meta-analysis of treatment efficacy. JAMA 1997, 278, 2170–2177. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Germain, A.; Hall, M.L.; Moul, D.E.; Nofzinger, E.A.; Begley, A.; Ehlers, C.L.; Thompson, W.; Kupfer, D.J. EEG spectral analysis in primary insomnia: NREM period effects and sex differences. Sleep 2008, 31, 1673–1682. [Google Scholar] [CrossRef] [Green Version]
- Perlis, M.L.; Smith, M.T.; Andrews, P.J.; Orff, H.; Giles, D.E. Beta/Gamma EEG activity in patients with primary and secondary insomnia and good sleeper controls. Sleep 2001, 24, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Bastien, C.H.; LeBlanc, M.; Carrier, J.; Morin, C.M. Sleep EEG Power Spectra, Insomnia, and Chronic Use of Benzodiazepines. Sleep 2003, 26, 313–317. [Google Scholar] [CrossRef] [Green Version]
- Freedman, R.R. EEG power spectra in sleep-onset insomnia. Electroencephalogr. Clin. Neurophysiol. 1986, 63, 408–413. [Google Scholar] [CrossRef]
- Merica, H.; Blois, R.; Gaillard, J.M. Spectral characteristics of sleep EEG in chronic insomnia. Eur. J. Neurosci. 1998, 10, 1826–1834. [Google Scholar] [CrossRef]
- Svetnik, V.; Snyder, E.S.; Ma, J.; Tao, P.; Lines, C.; Herring, W.J. EEG spectral analysis of NREM sleep in a large sample of patients with insomnia and good sleepers: Effects of age, sex and part of the night. J. Sleep Res. 2017, 26, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Dijk, D.J. Slow-wave sleep deficiency and enhancement: Implications for insomnia and its management. World J. Biol. Psychiatry 2010, 11, 22–28. [Google Scholar] [CrossRef]
- Gaillard, J.M. Chronic primary insomnia: Possible physiopathological involvement of slow wave sleep deficiency. Sleep 1978, 1, 133–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogan, S.E.; Delgado, G.M.; Hall, M.H.; Nimgoankar, V.L.; Germain, A.; Buysse, D.J.; Wilckens, K.A. Slow-oscillation activity is reduced and high frequency activity is elevated in older adults with insomnia. J. Clin. Sleep Med. 2020, 16, 1445–1454. [Google Scholar] [CrossRef] [PubMed]
- Basta, M.; Chrousos, G.P.; Vela-Bueno, A.; Vgontzas, A.N. Chronic insomnia and the stress system. Sleep Med. Clin. 2007, 2, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Stepanski, E.; Zorick, F.; Roehrs, T.; Young, D.; Roth, T. Daytime alertness in patients with chronic insomnia compared with asymptomatic control subjects. Sleep 1988, 11, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Edinger, J.D.; Glenn, D.M.; Bastian, L.A.; Marsh, G.R.; Daile, D.; Hope, T.V.; Young, M.; Shaw, E.; Meeks, G. Sleep in the laboratory and sleep at home II: Comparisons of middle-aged insomnia sufferers and normal sleepers. Sleep 2001, 24, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Bonnet, M.H.; Arand, D. 24-Hour metabolic rate in insomniacs and matched normal sleepers. Sleep 1995, 18, 581–588. [Google Scholar] [CrossRef]
- Zhao, W.; Gao, D.; Yue, F.; Wang, Y.; Mao, D.; Liu, T.; Lei, X. Spontaneous Theta Rhythm Predicts Insomnia Duration: A Resting-State EEG Study. In Advances in Cognitive Neurodynamics VI; Springer: Berlin/Heidelberg, Germany, 2018; pp. 359–364. [Google Scholar]
- Kwan, Y.; Baek, C.; Chung, S.; Kim, T.H.; Choi, S. Resting-state quantitative EEG characteristics of insomniac patients with depression. Int. J. Psychophysiol. 2018, 124, 26–32. [Google Scholar] [CrossRef]
- Wołyńczyk-Gmaj, D.; Szelenberger, W. Waking EEG in primary insomnia. Acta Neurobiol. Exp. 2011, 71, 387–392. [Google Scholar]
- Stastny, J.; Sovka, P.; Stancak, A. EEG signal classification. In Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 25–28 October 2001; Volume 2, pp. 2020–2023. [Google Scholar]
- Maksimenko, V.A.; Runnova, A.E.; Zhuravlev, M.O.; Makarov, V.V.; Nedayvozov, V.; Grubov, V.V.; Pchelintceva, S.V.; Hramov, A.E.; Pisarchik, A.N. Visual perception affected by motivation and alertness controlled by a noninvasive brain-computer interface. PLoS ONE 2017, 12, e0188700. [Google Scholar] [CrossRef]
- Makarov, V.V.; Zhuravlev, M.O.; Runnova, A.E.; Protasov, P.; Maksimenko, V.A.; Frolov, N.S.; Pisarchik, A.N.; Hramov, A.E. Betweenness centrality in multiplex brain network during mental task evaluation. Phys. Rev. E 2018, 98, 062413. [Google Scholar] [CrossRef]
- Iosifescu, D.V.; Greenwald, S.; Devlin, P.; Mischoulon, D.; Denninger, J.W.; Alpert, J.E.; Fava, M. Frontal EEG predictors of treatment outcome in major depressive disorder. Eur. Neuropsychopharmacol. 2009, 19, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Golz, M.; Schenka, A.; Haselbeck, F.; Pauli, M.P. Inter-individual variability of EEG features during microsleep events. Curr. Dir. Biomed. Eng. 2019, 5, 13–16. [Google Scholar] [CrossRef]
- Valizadeh, S.A.; Riener, R.; Elmer, S.; Jäncke, L. Decrypting the electrophysiological individuality of the human brain: Identification of individuals based on resting-state EEG activity. NeuroImage 2019, 197, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Grandy, T.H.; Werkle-Bergner, M.; Chicherio, C.; Schmiedek, F.; Lövdén, M.; Lindenberger, U. Peak individual alpha frequency qualifies as a stable neurophysiological trait marker in healthy younger and older adults. Psychophysiology 2013, 50, 570–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niedermeyer, E. Alpha rhythms as physiological and abnormal phenomena. Int. J. Psychophysiol. 1997, 26, 31–49. [Google Scholar] [CrossRef]
- Mulholland, T.B. Occurrence of the electroencephalographic alpha rhythm with eyes open. Nature 1965, 206, 746. [Google Scholar] [CrossRef]
- Piantoni, G.; Romeijn, N.; Gomez-Herrero, G.; Van Der Werf, Y.D.; Van Someren, E.J. Alpha power predicts persistence of bistable perception. Sci. Rep. 2017, 7, 5208. [Google Scholar] [CrossRef]
- Maksimenko, V.A.; Pavlov, A.; Runnova, A.E.; Nedaivozov, V.; Grubov, V.; Koronovslii, A.; Pchelintseva, S.V.; Pitsik, E.; Pisarchik, A.N.; Hramov, A.E. Nonlinear analysis of brain activity, associated with motor action and motor imaginary in untrained subjects. Nonlinear Dyn. 2018, 91, 2803–2817. [Google Scholar] [CrossRef]
- Angelakis, E.; Lubar, J.F.; Stathopoulou, S. Electroencephalographic peak alpha frequency correlates of cognitive traits. Neurosci. Lett. 2004, 371, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Busch, N.; VanRullen, R. Pre-stimulus eeg oscillations reveal periodic sampling of visual attention. J. Vis. 2010, 10, 219. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Schwabedal, J.T.; Riedl, M.; Penzel, T.; Wessel, N. Alpha-wave frequency characteristics in health and insomnia during sleep. J. Sleep Res. 2016, 25, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Riedner, B.A.; Goldstein, M.R.; Plante, D.T.; Rumble, M.E.; Ferrarelli, F.; Tononi, G.; Benca, R.M. Regional patterns of elevated alpha and high-frequency electroencephalographic activity during nonrapid eye movement sleep in chronic insomnia: A pilot study. Sleep 2016, 39, 801–812. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Snaith, R.P. The hospital anxiety and depression scale. Health Qual. Life Outcomes 2003, 1, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torresani, B. Continuous Wavelet Transform; Savoire: Paris, France, 1995. [Google Scholar]
- Hramov, A.E.; Koronovskii, A.A.; Makarov, V.A.; Pavlov, A.N.; Sitnikova, E. Wavelets in Neuroscience; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Aldroubi, A.; Unser, M.A. Wavelets in Biology and Medicine; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Garcia-Losarcos, N.; Vuppala, A.; Loparo, K. Continuous EEG Monitoring and Quantitative EEG Techniques; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Djonlagic, I.; Mariani, S.; Fitzpatrick, A.L.; Van Der Klei, V.M.; Johnson, D.A.; Wood, A.C.; Seeman, T.; Nguyen, H.T.; Prerau, M.J.; Luchsinger, J.A.; et al. Macro and micro sleep architecture and cognitive performance in older adults. Nat. Hum. Behav. 2021, 5, 172–174. [Google Scholar] [CrossRef] [PubMed]
- McShane, B.B.; Gal, D.; Gelman, A.; Robert, C.; Tackett, J.L. Abandon Statistical Significance. Am. Stat. 2019, 73, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Rougier, J. p-Values, Bayes Factors, and Sufficiency. Am. Stat. 2019, 73, 148–151. [Google Scholar] [CrossRef] [Green Version]
- Losert, A.; Sander, C.; Schredl, M.; Heilmann-Etzbach, I.; Deuschle, M.; Hegerl, U.; Schilling, C. Enhanced Vigilance Stability during Daytime in Insomnia Disorder. Brain Sci. 2020, 10, 830. [Google Scholar] [CrossRef] [PubMed]
- Zueva, E.Y.; Zuev, K.B. The concept of dominance by A.A. Ukhtomsky and Anticipation. In Anticipation: Learning from the Past; Springer: Berlin/Heidelberg, Germany, 2015; pp. 13–35. [Google Scholar]
- Tognoli, E. More than Meets the Mind’s Eye? Preliminary Observations Hint at Heterogeneous Alpha Neuromarkers for Visual Attention. Brain Sci. 2019, 9, 307. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.K.; Dizon, J. Computerised cognitive behavioural therapy for insomnia: A systematic review and meta-analysis. Psychother. Psychosom. 2012, 81, 206–216. [Google Scholar] [CrossRef]
- Sweetman, A.; Putland, S.; Lack, L.; McEvoy, R.D.; Adams, R.; Grunstein, R.; Stocks, N.; Kaambwa, B.; Van Ryswyk, E.; Gordon, C.; et al. The effect of cognitive behavioural therapy for insomnia on sedative-hypnotic use: A narrative review. Sleep Med. Rev. 2020, 101404. [Google Scholar] [CrossRef]
- Soh, H.L.; Ho, R.C.; Ho, C.S.; Tam, W.W. Efficacy of digital cognitive behavioural therapy for insomnia: A meta-analysis of randomised controlled trials. Sleep Med. 2020, 75, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Micoulaud-Franchi, J.A.; Mcgonigal, A.; Lopez, R.; Daudet, C.; Kotwas, I.; Bartolomei, F. Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice. Neurophysiol. Clin. Neurophysiol. 2015, 45, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Ros, T.; Enriquez-Geppert, S.; Zotev, V.; Young, K.D.; Wood, G.; Whitfield-Gabrieli, S.; Wan, F.; Vuilleumier, P.; Vialatte, F.; Van De Ville, D.; et al. Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain 2020, 143, 1674–1685. [Google Scholar] [CrossRef] [Green Version]
Frequency Band | Group I | Group II | Groupe III | P1 | P2 | P3 | |||
---|---|---|---|---|---|---|---|---|---|
m | m | m | |||||||
1.14 | 0.211 | 1.02 | 0.105 | 0.929 | 0.168 | 0.001 | <0.001 | 0.038 | |
1.22 | 0.22 | 0.895 | 0.086 | 0.882 | 0.201 | <0.001 | <0.001 | 0.799 | |
1.238 | 0.225 | 0.748 | 0.08 | 0.909 | 0.23 | <0.001 | <0.001 | <0.001 | |
1.31 | 0.235 | 0.694 | 0.1 | 0.978 | 0.246 | <0.001 | <0.001 | <0.001 | |
1.324 | 0.218 | 0.72 | 0.128 | 1.135 | 0.26 | <0.001 | <0.001 | <0.001 | |
1.274 | 0.211 | 0.837 | 0.084 | 0.953 | 0.207 | <0.001 | <0.001 | <0.001 | |
1.295 | 0.103 | 1.000 | 0.149 | 1.322 | 0.249 | <0.001 | 0.531 | <0.001 | |
1.895 | 0.257 | 1.104 | 0.199 | 1.827 | 0.269 | <0.001 | 0.068 | <0.001 | |
1.699 | 0.521 | 1.308 | 0.295 | 1.803 | 0.319 | 0.001 | 0.891 | <0.001 | |
1.389 | 0.509 | 1.413 | 0.278 | 1.562 | 0.300 | 0.378 | 0.17 | 0.011 | |
1.159 | 0.422 | 1.28 | 0.207 | 1.278 | 0.237 | 0.953 | 0.493 | 0.256 | |
7.42 | 1.635 | 6.15 | 1.1 | 7.864 | 1.177 | 0.001 | 0.891 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Runnova, A.; Selskii, A.; Kiselev, A.; Shamionov, R.; Parsamyan, R.; Zhuravlev, M. Changes in EEG Alpha Activity during Attention Control in Patients: Association with Sleep Disorders. J. Pers. Med. 2021, 11, 601. https://doi.org/10.3390/jpm11070601
Runnova A, Selskii A, Kiselev A, Shamionov R, Parsamyan R, Zhuravlev M. Changes in EEG Alpha Activity during Attention Control in Patients: Association with Sleep Disorders. Journal of Personalized Medicine. 2021; 11(7):601. https://doi.org/10.3390/jpm11070601
Chicago/Turabian StyleRunnova, Anastasiya, Anton Selskii, Anton Kiselev, Rail Shamionov, Ruzanna Parsamyan, and Maksim Zhuravlev. 2021. "Changes in EEG Alpha Activity during Attention Control in Patients: Association with Sleep Disorders" Journal of Personalized Medicine 11, no. 7: 601. https://doi.org/10.3390/jpm11070601
APA StyleRunnova, A., Selskii, A., Kiselev, A., Shamionov, R., Parsamyan, R., & Zhuravlev, M. (2021). Changes in EEG Alpha Activity during Attention Control in Patients: Association with Sleep Disorders. Journal of Personalized Medicine, 11(7), 601. https://doi.org/10.3390/jpm11070601