A Minimum Rank Approach for Reduction of Environmental Noise in Near-Field Array Antenna Diagnosis
"> Figure 1
<p>Geometry of the problem.</p> "> Figure 2
<p>Blue curve (left scale): rank of the field on the observation plane; red curve (right scale): <math display="inline"><semantics> <msub> <mi>ℓ</mi> <mn>1</mn> </msub> </semantics></math> norm normalized to the maximum of the field amplitude on the observation plane; the observation plane is <math display="inline"><semantics> <mrow> <mn>20</mn> <mi>λ</mi> <mo>×</mo> <mn>20</mn> <mi>λ</mi> </mrow> </semantics></math>; <span class="html-italic">d</span> is the distance between the source point and the observation plane.</p> "> Figure 3
<p>Measurement set-up; the data are collected on the surface Ω placed at a distance <span class="html-italic">d</span> from the AUT and are affected by a scattered field and Gaussian noise; some elements of the AUT are malfunctioning (red squares).</p> "> Figure 4
<p>(<b>a</b>) geometrical picture of the <math display="inline"><semantics> <msub> <mi>ℓ</mi> <mn>1</mn> </msub> </semantics></math> minimization; (<b>b</b>) geometrical picture of the trace norm minimization.</p> "> Figure 5
<p>1st example: normalized excitation amplitude of the radiating elements (linear scale in false colors: yellow = null amplitude, red = unit amplitude); (<b>a</b>) exact array excitations; (<b>b</b>) excitations obtained without filtering; (<b>c</b>) excitations obtained using the proposed filtering method; <math display="inline"><semantics> <mrow> <mn>7</mn> <mo>×</mo> <mn>7</mn> </mrow> </semantics></math> planar array with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> inter-element distance, <math display="inline"><semantics> <mrow> <mn>21</mn> <mo>×</mo> <mn>21</mn> </mrow> </semantics></math> measurement points, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>7</mn> <mi>λ</mi> </mrow> </semantics></math>, measured data affected by interference field radiated by a source placed at <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>y</mi> <mo>=</mo> <mn>2.2</mn> <mi>λ</mi> <mo>,</mo> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>8</mn> <mi>λ</mi> <mo>)</mo> </mrow> </semantics></math> and by <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>45</mn> </mrow> </semantics></math> dB level Gaussian noise.</p> "> Figure 6
<p>2nd example;: normalized excitation amplitude of the radiating elements (linear scale in false colors: yellow = null amplitude, red = unit amplitude); (<b>a</b>) exact array excitations; (<b>b</b>) excitations obtained without filtering; (<b>c</b>) excitations obtained using the proposed filtering method; <math display="inline"><semantics> <mrow> <mn>7</mn> <mo>×</mo> <mn>7</mn> </mrow> </semantics></math> planar array with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> inter-element distance, <math display="inline"><semantics> <mrow> <mn>21</mn> <mo>×</mo> <mn>21</mn> </mrow> </semantics></math> measurement points, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>7</mn> <mi>λ</mi> </mrow> </semantics></math>, measured data affected by interference field radiated by a source placed at <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>y</mi> <mo>=</mo> <mn>2.2</mn> <mi>λ</mi> <mo>,</mo> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>8</mn> <mi>λ</mi> <mo>)</mo> </mrow> </semantics></math> and by −35 dB level Gaussian noise.</p> "> Figure 7
<p>3rd example: normalized excitation amplitude of the radiating elements (linear scale in false colors: yellow = null amplitude, red = unit amplitude); (<b>a</b>) exact array excitations; (<b>b</b>) excitations obtained without filtering; (<b>c</b>) excitations obtained using the proposed filtering method; <math display="inline"><semantics> <mrow> <mn>7</mn> <mo>×</mo> <mn>7</mn> </mrow> </semantics></math> planar array with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> inter-element distance, <math display="inline"><semantics> <mrow> <mn>21</mn> <mo>×</mo> <mn>21</mn> </mrow> </semantics></math> measurement points, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>7</mn> <mi>λ</mi> </mrow> </semantics></math>, measured data affected by interference field radiated by a source placed at <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>y</mi> <mo>=</mo> <mn>3.2</mn> <mi>λ</mi> <mo>,</mo> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>8</mn> <mi>λ</mi> <mo>)</mo> </mrow> </semantics></math> and a source placed at <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>x</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mi>y</mi> <mo>=</mo> <mn>0</mn> <mi>λ</mi> <mo>,</mo> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>10</mn> <mi>λ</mi> <mo>)</mo> </mrow> </semantics></math>. The data are corrupted by −45 dB level Gaussian noise.</p> "> Figure 8
<p>4th example: normalized excitation amplitude of the radiating elements (linear scale in false colors: yellow = null amplitude, red = unit amplitude); (<b>a</b>) exact array excitations; (<b>b</b>) excitations obtained without filtering; (<b>c</b>) excitations obtained using the proposed filtering method; <math display="inline"><semantics> <mrow> <mn>9</mn> <mo>×</mo> <mn>9</mn> </mrow> </semantics></math> planar array with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> inter-element distance, <math display="inline"><semantics> <mrow> <mn>21</mn> <mo>×</mo> <mn>21</mn> </mrow> </semantics></math> measurement points, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>7</mn> <mi>λ</mi> </mrow> </semantics></math>, measured data affected by interference field radiated by a source placed at <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>y</mi> <mo>=</mo> <mn>3.2</mn> <mi>λ</mi> <mo>,</mo> <mi>z</mi> <mo>=</mo> <mo>−</mo> <mn>8</mn> <mi>λ</mi> <mo>)</mo> </mrow> </semantics></math> and by −45 dB level Gaussian noise.</p> ">
Abstract
:1. Introduction
2. Rank and Sparsity of the Feld Radiated by an Electric Dipole
3. The Array Failure Detection Algorithm with Reflection Filtering
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Agiwal, M.; Roy, A.; Saxena, N. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655. [Google Scholar] [CrossRef]
- Yaghjian, A. An overview of near-field antenna measurements. IEEE Trans. Antennas Propag. 1986, 34, 30–45. [Google Scholar] [CrossRef] [Green Version]
- Newell, A.C. Error analysis Techniques for Planar Near-Field Measurements. IEEE Trans. Antennas Propag. 1988, 36, 754–768. [Google Scholar] [CrossRef]
- Migliore, M.D. Near Field Antenna Measurement Sampling Strategies: From Linear to Nonlinear Interpolation. Electronics 2018, 7, 257. [Google Scholar] [CrossRef]
- Migliore, M.D. A Compressed Sensing Approach for Array Diagnosis From a Small Set of Near-Field Measurements. IEEE Trans. Antennas Propag. 2011, 59, 2127–2133. [Google Scholar] [CrossRef]
- Oliveri, G.; Carlin, M.; Massa, A. Complex-Weight Sparse Linear Array Synthesis by Bayesian Compressive Sampling. IEEE Trans. Antennas Propag. 2012, 60, 2309–2326. [Google Scholar] [CrossRef]
- Oliveri, G.; Rocca, P.; Massa, A. Reliable diagnosis of large linear arrays—A bayesian compressive sensing approach. IEEE Trans. Antennas Propag. 2012, 60, 4627–4636. [Google Scholar] [CrossRef]
- Salucci, M.; Gelmini, A.; Oliveri, G.; Massa, A. Planar arrays diagnosis by means of an advanced Bayesian compressive processing. IEEE Trans. Antennas Propag. 2018, 66, 5892–5906. [Google Scholar] [CrossRef]
- Fuchs, B.; Le Coq, L.; Migliore, M.D. Fast Antenna Array Diagnosis from a Small Number of Far-Field Measurements. IEEE Trans. Antennas Propag. 2016, 64, 2227–2235. [Google Scholar] [CrossRef]
- Costanzo, S.; Borgia, A.; di Massa, G.; Pinchera, D.; Migliore, M.D. Radar Array Diagnosis from Undersampled Data Using a Compressed Sensing/Sparse Recovery Technique. J. Electr. Comput. Eng. 2013, 2013, 627410. [Google Scholar] [CrossRef]
- Bolomey, J.; Bucci, O.M.; Casavola, L.; D’Elia, G.; Migliore, M.D.; Ziyyat, A. Reduction of truncation error in near-field measurements of antennas of base-station mobile communication systems. IEEE Trans. Antennas Propag. 2004, 52, 593–602. [Google Scholar] [CrossRef]
- Salucci, M.; Migliore, M.D.; Oliveri, G.; Massa, A. Antenna measurements-by-design for antenna qualification. IEEE Trans. Antennas Propag. 2018, 66, 6300–6312. [Google Scholar] [CrossRef]
- Martini, E.; Breinbjerg, O.; Maci, S. Reduction of Truncation Errors in Planar Near-Field Aperture Antenna Measurements Using the Gerchberg-Papoulis Algorithm. IEEE Trans. Antennas Propag. 2008, 56, 3485–3493. [Google Scholar] [CrossRef]
- Migliore, M.D.; Salucci, M.; Rocca, P.; Massa, A. Truncation-Error Reduction in Antenna Near-Field Measurements Using an Overcomplete Basis Representation. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 283–287. [Google Scholar] [CrossRef]
- Burnside, W.D.; Gupta, I.J. A method to reduce stray signal errors in antenna pattern measurements. IEEE Trans. Antennas Propag. 1994, 42, 399–405. [Google Scholar] [CrossRef]
- Alvarez, Y.; Las-Heras, F.; Pino, M.R. The sources reconstruction method for amplitude-only field measurements. IEEE Trans. Antennas Propag. 2010, 58, 2776–2781. [Google Scholar] [CrossRef]
- Brown, T.; Jeffrey, I.; Mojabi, P. Multiplicatively regularized source reconstruction method for phaseless planar near-field antenna measurements. IEEE Trans. Antennas Propag. 2017, 65, 2020–2031. [Google Scholar] [CrossRef]
- Quijano, J.L.A.; Vecchi, G. Field and source equivalence in source reconstruction on 3D surfaces. Prog. Electromagn. Res. 2010, 103, 67–100. [Google Scholar] [CrossRef]
- Bucci, O.M.; D’Elia, G.; Migliore, M.D. A general and effective clutter filtering strategy in near-field antenna measurements. Proc. IEE Microw. Antennas Propag. 2004, 151, 227–235. [Google Scholar] [CrossRef]
- Quijano, J.L.A.; Vecchi, G.; Li, L.; Sabbadini, M.; Scialacqua, L.; Bencivenga, B.; Mioc, F.; Foged, L.J. 3D spatial filtering applications in spherical near field antenna measurements. In Proceedings of the AMTA 2010 Symposium, Atlanta, GA, USA, 10–15 October 2010. [Google Scholar]
- Migliore, M.D. On the Sampling of the Electromagnetic Field Radiated by Sparse Sources. IEEE Trans. Antennas Propag. 2015, 63, 553–564. [Google Scholar] [CrossRef]
- Ji, H.; Liu, C.; Shen, Z.; Xu, Y. Robust video denoising using low rank matrix completion. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 1791–1798. [Google Scholar]
- Migliore, M.D. Minimum Trace Norm Regularization (MTNR) in Electromagnetic Inverse Problems. IEEE Trans. Antennas Propag. 2016, 64, 630–639. [Google Scholar] [CrossRef]
- Migliore, M.D. A simple introduction to compressed sensing/sparse recovery with applications in antenna measurements. IEEE Antennas Propag. Mag. 2014, 56, 14–26. [Google Scholar] [CrossRef]
- Candes, E.J.; Tao, T. The Power of Convex Relaxation: Near-Optimal Matrix Completion. IEEE Trans. Inf. Theory 2010, 56, 2053–2080. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, B.; Le Coq, L.; Migliore, M.D. On the Interpolation of Electromagnetic Near Field without Prior Knowledge of the Radiating Source. IEEE Trans. Inf. Theory 2017, 65, 3568–3574. [Google Scholar] [CrossRef]
- Keshavan, R.H.; Montanari, A.; Oh, S. Matrix Completion From a Few Entries. IEEE Trans. Inf. Theory 2010, 56, 2980–2998. [Google Scholar] [CrossRef] [Green Version]
- Brancaccio, A.; Migliore, M.D. A Simple and Effective Inverse Source Reconstruction with Minimum a Priori Information on the Source. IEEE Geosci. Remote Sens. Lett. 2017, 14, 454–458. [Google Scholar] [CrossRef]
- Migliore, M.D.; Pinchera, D.; Lucido, M.; Schettino, F.; Panariello, G. A Sparse Recovery Approach for Pattern Correction of Active Arrays in Presence of Element Failures. IEEE Antennas Wirel. Propag. 2015, 14, 1027–1030. [Google Scholar] [CrossRef]
Example | Array Elements | Number of Interf. | MSE Filt | MSE no Filt. | CPU Time |
---|---|---|---|---|---|
1st | 7 × 7 | 1 | −7.5 dB | −3.7 dB | 95 s |
2rd | 7 × 7 | 1 | −9.5 dB | −3.7 dB | 77 s |
3rd | 7 × 7 | 2 | −3.7 dB | 1.5 dB | 167 s |
4rth | 9 × 9 | 1 | −4.8 dB | 3.9 dB | 78 s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migliore, M.D.; Schettino, F.; Pinchera, D.; Lucido, M.; Panariello, G. A Minimum Rank Approach for Reduction of Environmental Noise in Near-Field Array Antenna Diagnosis. J. Imaging 2019, 5, 51. https://doi.org/10.3390/jimaging5050051
Migliore MD, Schettino F, Pinchera D, Lucido M, Panariello G. A Minimum Rank Approach for Reduction of Environmental Noise in Near-Field Array Antenna Diagnosis. Journal of Imaging. 2019; 5(5):51. https://doi.org/10.3390/jimaging5050051
Chicago/Turabian StyleMigliore, Marco Donald, Fulvio Schettino, Daniele Pinchera, Mario Lucido, and Gaetano Panariello. 2019. "A Minimum Rank Approach for Reduction of Environmental Noise in Near-Field Array Antenna Diagnosis" Journal of Imaging 5, no. 5: 51. https://doi.org/10.3390/jimaging5050051
APA StyleMigliore, M. D., Schettino, F., Pinchera, D., Lucido, M., & Panariello, G. (2019). A Minimum Rank Approach for Reduction of Environmental Noise in Near-Field Array Antenna Diagnosis. Journal of Imaging, 5(5), 51. https://doi.org/10.3390/jimaging5050051