Street Sign Recognition Using Histogram of Oriented Gradients and Artificial Neural Networks
<p>Overview of the proposed system for automatic street sign identification and interpretation.</p> "> Figure 2
<p>An example of a Malaysian street sign.</p> "> Figure 3
<p>Extraction of the region of interest: (<b>a</b>) block diagram of the algorithm and (<b>b</b>) results at each step.</p> "> Figure 4
<p>Extraction of text from the street sign.</p> "> Figure 5
<p>Visualisation of dimension in the histogram of oriented gradients (HOG) feature vector.</p> "> Figure 6
<p>Example training data set.</p> "> Figure 7
<p>Artificial neural network architecture.</p> "> Figure 8
<p>Presentation of recognised street signs: (<b>a</b>,<b>b</b>) are street signs, (<b>c</b>,<b>d</b>) are annotated street signs with recognised text, (<b>e</b>,<b>f</b>) are extracted text words, and (<b>g</b>,<b>h</b>) are the voice plots.</p> "> Figure 9
<p>Neural network training performance parameters: (<b>a</b>) cross-entropy, (<b>b</b>) training state, (<b>c</b>) error histogram, and (<b>d</b>) overall confusion matrix.</p> "> Figure 10
<p>Neural network training performance with respect to the receiver operating characteristic (ROC) curve.</p> "> Figure 11
<p>Testing image samples.</p> "> Figure 12
<p>Testing performance, (<b>a</b>) testing ROC curve and (<b>b</b>) testing confusion matrix.</p> "> Figure 13
<p>Some images taken from the testing data set that led to misclassifications: (<b>a</b>,<b>b</b>) are class ‘7’, (<b>c</b>,<b>b</b>) are class ‘1’, (<b>e</b>,<b>f</b>) are class ‘/’, (<b>g</b>) is class ‘2’, and (<b>h</b>) is class ‘N’.</p> "> Figure 14
<p>HSV, YCbCr, and CIEL*a*b* colour profiles.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Acquisition of Images
2.2. Extraction of the Region of Interest
2.3. Extraction of Text
2.4. Calculation of Text Features
2.5. Character Recognition
2.6. Text to Voice Interpretation
3. Experimental Results
3.1. Training Performance of the Neural Network
3.2. Performance on Testing Data
3.3. Comparison of ROI Extraction using Different Colour Spaces
3.4. Comparison of Different Feature Extraction Methods
3.5. Comparison with Similar Existing Methods
3.6. Comparison of Methods with Respect to the MNIST Database
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial neural network |
AR | Accuracy rate |
AUC | Area under curve |
BoF | Bag-of-features |
CCH | Chain code histogram |
CHOG | Co-occurrence HOG |
CNN | Convolution neural network |
FFANN | Feed-forward ANN |
FN | False negative |
FP | False positive |
GPS | Global positioning system |
HOG | Histogram of oriented gradients |
HSV | Hue, saturation, value |
LBP | Local binary patterns |
MNIST | Modified national institute of standards and technology |
MSER | Maximally stable extremal regions |
OCR | Optical character recognition |
ROC | Receiver operating characteristic |
R-HOG | Rectangular HOG |
SIFT | Scale-invariant feature transform |
SVM | Support vector machine |
TN | True negative |
TP | True positive |
References
- Nagy, G. At the frontiers of OCR. Proc. IEEE 1992, 80, 1093–1100. [Google Scholar] [CrossRef]
- Casey, R.G.; Lecolinet, E. A survey of methods and strategies in character segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 690–706. [Google Scholar] [CrossRef] [Green Version]
- Mori, S.; Suen, C.Y.; Yamamoto, K. Historical review of OCR research and development. Proc. IEEE 1992, 80, 1029–1058. [Google Scholar] [CrossRef]
- Plamondon, R.; Srihari, S.N. Online and off-line handwriting recognition: A comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 63–84. [Google Scholar] [CrossRef]
- Anagnostopoulos, C.E.; Anagnostopoulos, I.E.; Psoroulas, I.D.; Loumos, V.; Kayafas, E. License Plate Recognition From Still Images and Video Sequences: A Survey. IEEE Trans. Intell. Transp. Syst. 2008, 9, 377–391. [Google Scholar] [CrossRef]
- Parizi, S.N.; Targhi, A.T.; Aghazadeh, O.; Eklundh, J. Reading street signs using a generic structured object detection and signature recognition approach. In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications, Lisbon, Portugal, 5–8 February 2009; SciTePress-Science and and Technology Publications: Setúbal, Portugal, 2009. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.; Abe, N. A short introduction to boosting. J.-Jpn. Soc. Artif. Intell. 1999, 14, 1612. [Google Scholar]
- Lowe, D. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999. [Google Scholar] [CrossRef]
- Gonzalez, A.; Bergasa, L.M.; Yebes, J.J.; Almazan, J. Text recognition on traffic panels from street-level imagery. In Proceedings of the 2012 IEEE Intelligent Vehicles Symposium, Alcalá de Henares, Spain, 3–7 June 2012. [Google Scholar] [CrossRef]
- Matas, J.; Chum, O.; Urban, M.; Pajdla, T. Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 2004, 22, 761–767. [Google Scholar] [CrossRef]
- Kahraman, F.; Kurt, B.; Gökmen, M. License Plate Character Segmentation Based on the Gabor Transform and Vector Quantization. In Computer and Information Sciences-ISCIS; Springer: Berlin/Heidelberg, Germany, 2003; pp. 381–388. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, P.; Xiao, Y.; Li, B.; Hu, Y.; Qi, D.; Xiao, X.; Zhang, L. License plate-location using AdaBoost Algorithm. In Proceedings of the 2010 IEEE International Conference on Information and Automation, Harbin, China, 20–23 June 2010. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, H.; Jia, W.; He, X.; Yang, J.; Hintz, T. Car Plate Detection Using Cascaded Tree-Style Learner Based on Hybrid Object Features. In Proceedings of the 2006 IEEE International Conference on Video and Signal Based Surveillance, Sydney, Australia, 22–24 November 2006. [Google Scholar] [CrossRef]
- Sarfraz, M.; Ahmed, M.; Ghazi, S. Saudi Arabian license plate recognition system. In Proceedings of the 2003 International Conference on Geometric Modeling and Graphics, London, UK, 16–18 July 2003. [Google Scholar] [CrossRef]
- Gupta, P.; Purohit, G.N.; Rathore, M. Number Plate Extraction using Template Matching Technique. Int. J. Comput. Appl. 2014, 88, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Mayan, J.A.; Deep, K.A.; Kumar, M.; Alvin, L.; Reddy, S.P. Number plate recognition using template comparison for various fonts in MATLAB. In Proceedings of the 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Tamil Nadu, India, 15–17 December 2016. [Google Scholar] [CrossRef]
- Sharma, G. Performance Analysis of Vehicle Number Plate Recognition System Using Template Matching Techniques. J. Inf. Technol. Softw. Eng. 2018, 8. [Google Scholar] [CrossRef]
- Dia, Y.; Zheng, N.; Zhang, X.; Xuan, G. Automatic recognition of province name on the license plate of moving vehicle. In Proceedings of the 9th International Conference on Pattern Recognition, Rome, Italy, 14–17 November 1988. [Google Scholar] [CrossRef]
- Hegt, H.; de la Haye, R.; Khan, N. A high performance license plate recognition system. In Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics, San Diego, CA, USA, 14 October 1998. [Google Scholar] [CrossRef]
- Sanchez-Marin, F.J. Automatic recognition of biological shapes using the Hotelling transform. Comput. Biol. Med. 2001, 31, 85–99. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef] [Green Version]
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001; Volume 1. [Google Scholar] [CrossRef]
- Harris, Z.S. Distributional Structure. WORD 1954, 10, 146–162. [Google Scholar] [CrossRef] [Green Version]
- Barnouti, N.H.; Naser, M.A.S.; Al-Dabbagh, S.S.M. Automatic Iraqi license plate recognition system using back propagation neural network (BPNN). In Proceedings of the 2017 Annual Conference on New Trends in Information & Communications Technology Applications (NTICT), Baghdad, Iraq, 7–9 March 2017. [Google Scholar] [CrossRef]
- Islam, K.T.; Raj, R.G. Real-Time (Vision-Based) Road Sign Recognition Using an Artificial Neural Network. Sensors 2017, 17, 853. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.T.; Raj, R.G.; Mujtaba, G. Recognition of Traffic Sign Based on Bag-of-Words and Artificial Neural Network. Symmetry 2017, 9, 138. [Google Scholar] [CrossRef]
- Khan, M.A.; Sharif, M.; Javed, M.Y.; Akram, T.; Yasmin, M.; Saba, T. License number plate recognition system using entropy-based features selection approach with SVM. IET Image Process. 2018, 12, 200–209. [Google Scholar] [CrossRef]
- Llorens, D.; Marzal, A.; Palazón, V.; Vilar, J.M. Car License Plates Extraction and Recognition Based on Connected Components Analysis and HMM Decoding. In Pattern Recognition and Image Analysis; Springer: Berlin/Heidelberg, Germany, 2005; pp. 571–578. [Google Scholar] [CrossRef]
- Leszczuk, M.; Skoczylas, L.; Dziech, A. Simple solution for public transport route number recognition based on visual information. In Proceedings of the 2013 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 26–28 September 2013; pp. 32–38. [Google Scholar]
- Anthimopoulos, M.; Gatos, B.; Pratikakis, I. Detection of artificial and scene text in images and video frames. Pattern Anal. Appl. 2013, 16, 431–446. [Google Scholar] [CrossRef]
- Basavanna, M.; Shivakumara, P.; Srivatsa, S.K.; Kumar, G.H. Adaptive Histogram Analysis for Scene Text Binarization and Recognition. Malays. J. Comput. Sci. 2016, 29, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Gomez, L.; Karatzas, D. A fast hierarchical method for multi-script and arbitrary oriented scene text extraction. Int. J. Doc. Anal. Recognit. IJDAR 2016, 19, 335–349. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Peng, X.; Zhuang, X.; Natarajan, P.; Cao, H. Text detection and recognition in natural scenes and consumer videos. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 1245–1249. [Google Scholar] [CrossRef]
- Mammeri, A.; Khiari, E.; Boukerche, A. Road-Sign Text Recognition Architecture for Intelligent Transportation Systems. In Proceedings of the 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Vancouver, BC, Canada, 14–17 September 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, K.; Babenko, B.; Belongie, S. End-to-end scene text recognition. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1457–1464. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar] [CrossRef]
- Takahashi, K.; Takahashi, S.; Cui, Y.; Hashimoto, M. Remarks on Computational Facial Expression Recognition from HOG Features Using Quaternion Multi-layer Neural Network. In Engineering Applications of Neural Networks; Springer International Publishing: Cham, Switzerland, 2014; pp. 15–24. [Google Scholar]
- Smith, A.R. Color gamut transform pairs. ACM SIGGRAPH Comput. Graph. 1978, 12, 12–19. [Google Scholar] [CrossRef]
- Kamble, P.M.; Hegadi, R.S. Handwritten Marathi Character Recognition Using R-HOG Feature. Procedia Comput. Sci. 2015, 45, 266–274. [Google Scholar] [CrossRef] [Green Version]
- Su, B.; Lu, S.; Tian, S.; Lim, J.H.; Tan, C.L. Character Recognition in Natural Scenes Using Convolutional Co-occurrence HOG. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 2926–2931. [Google Scholar] [CrossRef]
- Tian, S.; Lu, S.; Su, B.; Tan, C.L. Scene Text Recognition Using Co-occurrence of Histogram of Oriented Gradients. In Proceedings of the 2013 12th International Conference on Document Analysis and Recognition, Washington, DC, USA, 25–28 August 2013; pp. 912–916. [Google Scholar] [CrossRef]
- Boukharouba, A.; Bennia, A. Novel feature extraction technique for the recognition of handwritten digits. Appl. Comput. Inform. 2017, 13, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Iivarinen, J.; Visa, A.J.E. Shape recognition of irregular objects. In Intelligent Robots and Computer Vision XV: Algorithms, Techniques, Active Vision, and Materials Handling; Casasent, D.P., Ed.; SPIE: Bellingham, WA, USA, 1996. [Google Scholar] [CrossRef]
- Niu, X.X.; Suen, C.Y. A novel hybrid CNN–SVM classifier for recognizing handwritten digits. Pattern Recognit. 2012, 45, 1318–1325. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
Name | Description |
---|---|
Image acquisition device name | Canon Power Shot SX530 HS |
Weather | Daylight, rainy, sunny, cloudy |
Capturing period | 8 a.m. to 6 p.m. |
Background | Complex; not fixed |
Horizontal field-of-view | Approximately 75 |
Image dimension | 4608 × 3456 |
Maximum capturing distance | 60 m |
Street sign condition | Standard, non-standard |
Total number of characters | 16 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, J, L, N, /) |
Number of characters acquired per class | 300 |
Total number of character acquired | 4800 |
Total number of training samples | 3200 |
Total number of testing samples | 1600 |
No. of Training | Iterations | Training Time | Performance | Gradient | Validation Checks | Error (%) |
---|---|---|---|---|---|---|
1 | 10 | 0:00:01 | 0.178 | 0.0472 | 0 | 90.50000 × 10 |
2 | 20 | 0:00:02 | 0.0104 | 0.0433 | 0 | 52.25000 × 10 |
3 | 30 | 0:01:03 | 0.0695 | 0.182 | 0 | 15.93749 × 10 |
4 | 40 | 0:00:04 | 0.0625 | 0.0687 | 0 | 15.87500 × 10 |
5 | 50 | 0:00:05 | 0.0168 | 0.0570 | 0 | 3.75000 × 10 |
6 | 60 | 0:00:06 | 0.0170 | 0.0545 | 0 | 4.37500 × 10 |
7 | 70 | 0:00:07 | 0.0158 | 0.0350 | 0 | 2.68750 × 10 |
8 | 80 | 0:00:09 | 0.00842 | 0.0371 | 0 | 4.37500 × 10 |
9 | 90 | 0:00:09 | 0.0067 | 0.0258 | 0 | 1.87500 × 10 |
10 | 100 | 0:00:10 | 0.00162 | 0.00144 | 0 | 6.25000 × 10 |
11 | 110 | 0:00:11 | 0.00256 | 0.00515 | 0 | 6.25000 × 10 |
12 | 120 | 0:00:13 | 0.000735 | 0.000878 | 6 | 6.25000 × 10 |
13 | 130 | 0:00:14 | 0.00423 | 0.00793 | 0 | 2.50000 × 10 |
14 | 140 | 0:00:14 | 0.000813 | 0.00161 | 0 | 6.25000 × 10 |
15 | 150 | 0:00:15 | 0.000869 | 0.00245 | 0 | 1.25000 × 10 |
16 | 168 | 0:00:17 | 4.73 × 10 | 8.68 × 10 | 6 | 0 |
Evaluation Parameters | Mathematical Equations | Result |
---|---|---|
Accuracy | 0.99375 | |
Sensitivity | 0.99000 | |
Specificity | 0.99400 | |
Precision | 0.91667 | |
F-Measure | 0.95192 | |
G-Mean | 0.99200 |
Method | Detection Time (s) | Accuracy (%) |
---|---|---|
HSV | 96.980 | |
YCbCr | 96.698 | |
CIEL*a*b* | 96.580 | |
Proposed (RGB) | 96.821 |
Method | Average Feature Extraction Time (s) | Accuracy (%) |
---|---|---|
LBP | 0.08 | 97.352 |
Haar-like | 0.07 | 95.193 |
BoF | 0.12 | 99.285 |
Proposed (HOG) | 0.10 | 99.375 |
Reference | Features Extraction Method | Classifier (s) | Execution Time (s) | Accuracy (%) |
---|---|---|---|---|
Kamble et al. [39] | R-HOG | FFANN | 98.718 | |
Kamble et al. [39] | R-HOG | SVM | 96.523 | |
Su et al. [40] | HOG | SVM | 94.890 | |
Tian et al. [41] | HOG | SVM | 94.890 | |
Boukharouba et al. [42] | CCH | SVM | 98.250 | |
Niu et al. [44] | CNN | CNN + SVM | 97.325 | |
Proposed | HOG | ANN | 99.375 |
Reference | Features Extraction Method | Classifier (s) | Execution Time (s) | Accuracy (%) |
---|---|---|---|---|
Kamble et al. [39] | R-HOG | FFANN | 0.05 | 99.134 |
Kamble et al. [39] | R-HOG | SVM | 0.07 | 98.953 |
Su et al. [40] | HOG | SVM | 0.06 | 98.400 |
Tian et al. [41] | HOG | SVM | 0.06 | 98.400 |
Boukharouba et al. [42] | CCH | SVM | 0.06 | 99.050 |
Niu et al. [44] | CNN | CNN + SVM | 0.07 | 99.614 |
Proposed | HOG | ANN | 0.05 | 99.482 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, K.T.; Wijewickrema, S.; Raj, R.G.; O’Leary, S. Street Sign Recognition Using Histogram of Oriented Gradients and Artificial Neural Networks. J. Imaging 2019, 5, 44. https://doi.org/10.3390/jimaging5040044
Islam KT, Wijewickrema S, Raj RG, O’Leary S. Street Sign Recognition Using Histogram of Oriented Gradients and Artificial Neural Networks. Journal of Imaging. 2019; 5(4):44. https://doi.org/10.3390/jimaging5040044
Chicago/Turabian StyleIslam, Kh Tohidul, Sudanthi Wijewickrema, Ram Gopal Raj, and Stephen O’Leary. 2019. "Street Sign Recognition Using Histogram of Oriented Gradients and Artificial Neural Networks" Journal of Imaging 5, no. 4: 44. https://doi.org/10.3390/jimaging5040044
APA StyleIslam, K. T., Wijewickrema, S., Raj, R. G., & O’Leary, S. (2019). Street Sign Recognition Using Histogram of Oriented Gradients and Artificial Neural Networks. Journal of Imaging, 5(4), 44. https://doi.org/10.3390/jimaging5040044