Accuracy Assessment of Molded, Patient-Specific Polymethylmethacrylate Craniofacial Implants Compared to Their 3D Printed Originals
<p>3D printed skull models with the defect area shown. (<b>a</b>) cranial defect (CRD); (<b>b</b>) temporo-orbital defect (TOD).</p> "> Figure 2
<p>Comparison of the 3D printed templates (<b>a</b>,<b>b</b>, beige) with the patient-specific implants according to the n-point registration with five manually placed control points (<b>c</b>,<b>d</b>, purple), and the superimposition (<b>e</b>,<b>f</b>). Left: cranial template and PSI; right: temporo-orbital template and PSI.</p> "> Figure 2 Cont.
<p>Comparison of the 3D printed templates (<b>a</b>,<b>b</b>, beige) with the patient-specific implants according to the n-point registration with five manually placed control points (<b>c</b>,<b>d</b>, purple), and the superimposition (<b>e</b>,<b>f</b>). Left: cranial template and PSI; right: temporo-orbital template and PSI.</p> "> Figure 3
<p>Descriptive data distribution illustrating the difference between the CRD-PSIs (models 1 to 10) and the CRD 3D printed template. (<b>a</b>) Mean difference ± SD (mm); (<b>b</b>) Median difference (Q1 to Q3) (mm).</p> "> Figure 4
<p>Descriptive data distribution illustrating the difference between the TOD-PSIs (models 1 to 10) and the TOD 3D printed template. (<b>a</b>) Mean difference ± SD (mm); (<b>b</b>) Median difference (Q1 to Q3) (mm).</p> "> Figure 5
<p>Box plot illustrating the accuracy comparison with respect to the root mean square (RMS) values (mm) between the polymethylmethacrylate (PMMA) CRD-PSI and TOD-PSI test groups (● describes the statistical outlier, CRD-PSI 01).</p> "> Figure 6
<p>Color-coded deviation maps within each test group after applying the best-fit method and generating a 3D comparison to evaluate the accuracy. CRD-PSI: (<b>a</b>) squamous (outer) surface; (<b>c</b>) cerebral (inner) surface; TOD-PSI: (<b>b</b>) squamous (outer) surface; (<b>d</b>) cerebral (inner) surface.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Design of PSIs
2.2. 3D Printing and Scanning Protocol for PSI Templates
2.3. Fabrication Process of the Silicone Mold and Subsequently of the PMMA PSIs
2.4. Scanning Process of the PMMA PSIs
2.5. Accuracy Analyses
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CAD | Computer-aided design |
CBCT | Cone-beam computed tomography |
CRD | Cranial defect |
CT | Computer tomography |
DICOM | Digital imaging and communications in medicine |
FFF | Fused filament fabrication |
HA | Hydroxyapatite |
HU | Hounsfield units |
MIMICS | Materialise interactive medical image control system |
MM | Millimeters |
PEEK | Polyetheretherketone |
PLA | Polylactic acid |
PMMA | Polymethylmethacrylate |
PSI | Patient-specific implant |
RMS | Root mean square |
SD | Standard deviation |
STL | Standard tessellation language |
Ti | Titanium |
TOD | Temporo-orbital defect |
2D | Two-dimensional |
3D | Three-dimensional |
References
- Sorour, M.; Caton, W.L.; Couldwell, W.T. Technique for methyl methacrylate cranioplasty to optimize cosmetic outcome. Acta Neurochir. 2014, 156, 207–209. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Antonyshyn, O.M.; Forrest, C.R. Cranioplasty: Indications, technique, and early results of autogenous split skull cranial vault reconstruction. J. Craniomaxillofac. Surg. 1995, 23, 133–142. [Google Scholar] [CrossRef]
- Turgut, G.; Özkaya, Ö.; Kayali, M.U. Computer-aided design and manufacture and rapid prototyped polymethylmethacrylate reconstruction. J. Craniofac Surg. 2012, 23, 770–773. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Kucukyuruk, B.; Abuzayed, B.; Aydin, S.; Sanus, G.Z. Cranioplasty: Review of materials and techniques. J. Neurosci. Rural Pract. 2011, 2, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Gilardino, M.S.; Karunanayake, M.; Al-Humsi, T.; Izadpanah, A.; Al-Ajmi, H.; Marcoux, J.; Atkinson, J.; Farmer, J.P. A comparison and cost analysis of cranioplasty techniques: Autologous bone versus custom computer-generated implants. J. Craniofac. Surg. 2015, 26, 113–117. [Google Scholar] [CrossRef]
- Konofaos, P.; Wallace, R.D. Innovation to Pediatric Cranioplasty. J. Craniofac. Surg. 2019, 30, 519–524. [Google Scholar] [CrossRef]
- Hng, D.; Bhaskar, I.; Khan, M.; Budgeon, C.; Damodaran, O.; Knuckey, N.; Lee, G. Delayed cranioplasty: Outcomes using frozen autologous bone flaps. Craniomaxillofac. Trauma Reconstr. 2015, 8, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Stieglitz, L.H.; Gerber, N.; Schmid, T.; Mordasini, P.; Fichtner, J.; Fung, C.; Murek, M.; Weber, S.; Raabe, A.; Beck, J. Intraoperative fabrication of patient-specific moulded implants for skull reconstruction: Single-centre experience of 28 cases. Acta Neurochir. 2014, 156, 793–803. [Google Scholar] [CrossRef] [Green Version]
- Small, J.M.; Graham, M.P. Acrylic resin for the closure of skull defects. Br. J. Surg. 1945, 33, 106–113. [Google Scholar] [CrossRef]
- Moreira-Gonzalez, A.; Jackson, I.T.; Miyawaki, T.; Barakat, K.; DiNick, V. Clinical outcome in cranioplasty: Critical review in long-term follow-up. J. Craniofac. Surg. 2003, 14, 144–153. [Google Scholar] [CrossRef]
- Marchac, D.; Greensmith, A. Long-term experience with methylmethacrylate cranioplasty in craniofacial surgery. J. Plast. Reconstr. Aesthet. Surg. 2008, 61, 744–752. [Google Scholar] [CrossRef]
- Msallem, B.; Beiglboeck, F.; Honigmann, P.; Jaquiéry, C.; Thieringer, F. Craniofacial reconstruction by a cost-efficient template-based process using 3D printing. Plast. Reconstr. Surg. Glob. Open 2017, 5, e1582. [Google Scholar] [CrossRef] [Green Version]
- Chiarini, L.; Figurelli, S.; Pollastri, G.; Torcia, E.; Ferrari, F.; Albanese, M.; Nocini, P.F. Cranioplasty using acrylic material: A new technical procedure. J. Craniomaxillofac. Surg. 2004, 32, 5–9. [Google Scholar] [CrossRef]
- Gerber, N.; Stieglitz, L.; Peterhans, M.; Nolte, L.P.; Raabe, A.; Weber, S. Using rapid prototyping molds to create patient specific polymethylmethacrylate implants in cranioplasty. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010. [Google Scholar]
- Sürme, M.B.; Hergunsel, O.B.; Akgun, B.; Kaplan, M. Cranioplasty with preoperatively customized Polymethyl-methacrylate by using 3-Dimensional Printed Polyethylene Terephthalate Glycol Mold. J. Neurosci. Neurol. Disord. 2018, 2, 52–64. [Google Scholar] [CrossRef] [Green Version]
- Abdel Hay, J.; Smayra, T.; Moussa, R. Customized polymethylmethacrylate cranioplasty implants using 3-dimensional printed polylactic acid molds; technical note with 2 illustrative cases. World Neurosurg. 2017, 105, 971–979. [Google Scholar] [CrossRef] [PubMed]
- PALACOS R/R+G (High Viscosity Bone Cement), Heraues Kulzer GmbH, Hanau, Germany—Instruction for Use. Available online: https://www.heraeus.com/media/media/hme/doc_hme/products_hme/palacos_bone_cement/r_rg_mv_mvg_lv_lvg/ifu/PALACOS_R_IFU.pdf (accessed on 8 August 2019).
- Marongiu, G.; Prost, R.; Capone, A. A New Diagnostic Approach for Periprosthetic Acetabular Fractures Based on 3D Modeling: A Study Protocol. Diagnostics 2019, 10, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Costa, D.; Lajarin, S. Comparison of cranioplasty implants produced by machining and by casting in a gypsum mold. Int. J. Adv. Manuf. Technol. 2012, 58, 1–8. [Google Scholar] [CrossRef]
- Gelaude, F.; Sloten, J.V.; Lauwers, B. Automated design and production of cranioplasty plates: Outer surface methodology, accuracies and a direct comparison to manual techniques. Comput. Aided Des. Appl. 2006, 3, 193–202. [Google Scholar] [CrossRef]
- Joffe, J.M.; Nicoll, S.R.; Richards, R.; Linney, A.D.; Harris, M. Validation of computer-assisted manufacture of titanium plates for cranioplasty. Int. J. Oral Maxillofac. Surg. 1999, 28, 309–313. [Google Scholar] [CrossRef]
- Moser, M.; Schmid, R.; Schindel, R.; Hildebrandt, G. Patient-specific polymethylmethacrylate prostheses for secondary reconstruction of large calvarial defects: A retrospective feasibility study of a new intraoperative moulding device for cranioplasty. J. Craniomaxillofac. Surg. 2017, 45, 295–303. [Google Scholar] [CrossRef]
- George, E.; Liacouras, P.; Rybicki, F.J.; Mitsouras, D. Measuring and Establishing the Accuracy and Reproducibility of 3D Printed Medical Models. Radiographics 2017, 37, 1424–1450. [Google Scholar] [CrossRef] [PubMed]
- Hatz, C.R.; Msallem, B.; Aghlmandi, S.; Brantner, P.; Thieringer, F.M. Can an entry-level 3D printer create high-quality anatomical models? Accuracy assessment of mandibular models printed by a desktop 3D printer and a professional device. Int. J. Oral Maxillofac. Surg. 2020, 49, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Van Putten, M.C.; Yamada, S. Alloplastic cranial implants made from computed tomographic scan-generated casts. J. Prosthet. Dent. 1992, 68, 103–108. [Google Scholar] [CrossRef]
- Christensen, A.; Rybicki, F.J. Maintaining safety and efficacy for 3D printing in medicine. 3D Print Med. 2017, 3, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honigmann, P.; Sharma, N.; Okolo, B.; Popp, U.; Msallem, B.; Thieringer, F.M. Patient-specific surgical implants made of 3D printed PEEK: Material, Technology, and scope of surgical application. BioMed Res. Int. 2018, 2018, 4520636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasel, J.H.; Beinemann, J.; Schaller, K.; Gailloud, P. A critical inventory of preoperative skull replicas. Ann. R. Coll. Surg. Engl. 2013, 95, 401–404. [Google Scholar] [CrossRef]
- Peltola, M.J.; Vallittu, P.K.; Vuorinen, V.; Aho, A.A.; Puntala, A.; Aitasalo, K.M. Novel composite implant in craniofacial bone reconstruction. Eur. Arch. Otorhinolaryngol. 2012, 269, 623–628. [Google Scholar] [CrossRef] [Green Version]
- Lindén, U. Porosity in manually mixed bone cement. Clin. Orthop. Relat. Res. 1988, 231, 110–112. [Google Scholar]
- Kurdy, N.M.; Hodgkinson, J.P.; Haynes, R. Acrylic bone-cement. Influence of mixer design and unmixed powder. J. Arthroplast. 1996, 11, 813–819. [Google Scholar] [CrossRef]
- Van de Vijfeijken, S.E.C.M.; Münker, T.J.A.G.; de Jager, N.; Vandertop, W.P.; Becking, A.G.; Kleverlaan, C.J. Properties of an In Vivo Fractured Poly(Methyl Methacrylate) Cranioplasty After 15 Years. World Neurosurg. 2019, 123, 60–68. [Google Scholar] [CrossRef]
- Vlok, A.J.; Naidoo, S.; Kamat, A.S.; Lamprecht, D. Evaluation of locally manufactured patient-specific custom made implants for cranial defects using a silicone mould. S. Afr. J. Surg. 2018, 56, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Fathi, A.R.; Marbacher, S.; Lukes, A. Cost-effective patient-specific intraoperative molded cranioplasty. J. Craniofac. Surg. 2008, 19, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Ebel, F.; Thieringer, F.M.; Kunz, C.; Klein-Franke, A.; Scheinemann, K.; Guzman, R.; Soleman, J. Melanotic neuroectodermal tumor of infancy to the skull: Case-based review. Childs Nerv. Syst. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Hong, K.S.; Park, K.J.; Park, D.H.; Chung, Y.G.; Kang, S.H. Customized cranioplasty implants using three-dimensional printers and polymethyl-methacrylate casting. J. Korean Neurosurg. Soc. 2012, 52, 541–546. [Google Scholar] [CrossRef]
- Russo, T.; De Santis, R.; Gloria, A.; Barbaro, K.; Altigeri, A.; Fadeeva, I.V.; Rau, J.V. Modification of PMMA Cements for Cranioplasty with Bioactive Glass and Copper Doped Tricalcium Phosphate Particles. Polymers 2020, 12, 37. [Google Scholar] [CrossRef] [Green Version]
Implant | Volume | kV | mA | Voxel |
---|---|---|---|---|
CRD-PSI | 17 × 13.5 cm3 | 90 | 5.0 | 300 µm |
TOD-PSI | 10 × 10 cm3 | 90 | 5.0 | 180 µm |
Implant | Mean Difference ± SD | Median Difference (Q1 to Q3) |
---|---|---|
CRD-PSIs | 0.383 ± 0.547 | 0.334 (0.122 to 0.722) |
TOD-PSIs | 0.228 ± 0.790 | −0.159 (−0.662 to 0.165) |
Implant | RMS (mm) | Implant | RMS (mm) |
---|---|---|---|
CRD-PSI 01 | 1.128 | TOD-PSI 01 | 0.630 |
CRD-PSI 02 | 0.701 | TOD-PSI 02 | 0.630 |
CRD-PSI 03 | 0.562 | TOD-PSI 03 | 1.079 |
CRD-PSI 04 | 0.469 | TOD-PSI 04 | 0.635 |
CRD-PSI 05 | 0.836 | TOD-PSI 05 | 0.983 |
CRD-PSI 06 | 0.644 | TOD-PSI 06 | 0.875 |
CRD-PSI 07 | 0.510 | TOD-PSI 07 | 0.747 |
CRD-PSI 08 | 0.535 | TOD-PSI 08 | 0.811 |
CRD-PSI 09 | 0.528 | TOD-PSI 09 | 0.878 |
CRD-PSI 10 | 0.585 | TOD-PSI 10 | 0.943 |
Implant | Median (Q1 to Q3) | p-Value * |
---|---|---|
CRD-PSIs | 0.574 (0.528 to 0.701) | 0.028 |
TOD-PSIs | 0.843 (0.635 to 0.943) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamo, D.; Msallem, B.; Sharma, N.; Aghlmandi, S.; Kunz, C.; Thieringer, F.M. Accuracy Assessment of Molded, Patient-Specific Polymethylmethacrylate Craniofacial Implants Compared to Their 3D Printed Originals. J. Clin. Med. 2020, 9, 832. https://doi.org/10.3390/jcm9030832
Chamo D, Msallem B, Sharma N, Aghlmandi S, Kunz C, Thieringer FM. Accuracy Assessment of Molded, Patient-Specific Polymethylmethacrylate Craniofacial Implants Compared to Their 3D Printed Originals. Journal of Clinical Medicine. 2020; 9(3):832. https://doi.org/10.3390/jcm9030832
Chicago/Turabian StyleChamo, Dave, Bilal Msallem, Neha Sharma, Soheila Aghlmandi, Christoph Kunz, and Florian M. Thieringer. 2020. "Accuracy Assessment of Molded, Patient-Specific Polymethylmethacrylate Craniofacial Implants Compared to Their 3D Printed Originals" Journal of Clinical Medicine 9, no. 3: 832. https://doi.org/10.3390/jcm9030832