Salivary Oxidative Stress Increases with the Progression of Chronic Heart Failure
<p>Enzymatic and non-enzymatic antioxidants in non-stimulated and stimulated of HF patients and the control group. Abbreviations: CAT—catalase; GPx—glutathione peroxidase; GSH—reduced glutathione; NWS—non-stimulated whole saliva; NYHA II—class II in the New York Heart Association (NYHA) classification of the heart failure; NYHA III—class III in the New York Heart Association (NYHA) classification of the heart failure; Px—salivary peroxidase; SOD—superoxide dismutase-1; SWS—stimulated whole saliva; UA—uric acid. Differences statistically important at: <span class="html-italic">p</span> *< 0.05, **< 0.01, ***< 0.001.</p> "> Figure 2
<p>Total antioxidant/oxidant status in non-stimulated and stimulated saliva of HF patients and the control group. Abbreviations: NWS—non-stimulated whole saliva; NYHA II—class II in the New York Heart Association (NYHA) classification of the heart failure; NYHA III—class III in the New York Heart Association (NYHA) classification of the heart failure; OSI—oxidative stress index; SWS—stimulated whole saliva; TAC—total antioxidant capacity; TOS—total oxidant status. Differences statistically important at: <span class="html-italic">p</span> **< 0.01, ***< 0.001.</p> "> Figure 3
<p>Oxidative damage to proteins and lipids in non-stimulated and stimulated saliva of HF patients and the control group. Abbreviations: AGE—advanced glycation end products; AOPP—advanced oxidation protein products; MDA—malondialdehyde; NWS—non-stimulated whole saliva; NYHA II—class II in the New York Heart Association (NYHA) classification of the heart failure; NYHA III—class III in the New York Heart Association (NYHA) classification of the heart failure; SWS—stimulated whole saliva. Differences statistically important at: <span class="html-italic">p</span> *< 0.05, ***< 0.001.</p> "> Figure 4
<p>Antioxidant barrier (<b>A</b>), redox status (<b>B</b>), and oxidative damage to proteins and lipids (<b>C</b>) in the erythrocytes/plasma of HF patients and the control group. Abbreviations: AGE—advanced glycation end products; AOPP—advanced oxidation protein products; CAT—catalase; GPx—glutathione peroxidase; GSH—reduced glutathione; MDA—malondialdehyde; NYHA II—class II in the New York Heart Association (NYHA) classification of the heart failure; NYHA III—class III in the New York Heart Association (NYHA) classification of the heart failure; OSI—oxidative stress index; Px—salivary peroxidase; SOD—superoxide dismutase-1; TAC—total antioxidant capacity; TOS—total oxidant status; UA—uric acid. Differences statistically important at: <span class="html-italic">p</span> *< 0.05, ***< 0.001.</p> "> Figure 5
<p>Correlations between salivary and plasma AGE, AOPP, and MDA in patients with heart failure. Abbreviations: AGE—advanced glycation end products; AOPP—advanced oxidation protein products; MDA—malondialdehyde; NWS—non-stimulated whole saliva.</p> "> Figure 6
<p>Correlations between salivary AGE content, serum NT-proBNP, and cardiac ejection fraction in patients with heart failure. Abbreviations: AGE—advanced glycation end products; EF—ejection fraction; NT-proBNP—N-terminal fragment of prohormone B-type natriuretic peptide; NWS—non-stimulated whole saliva.</p> "> Figure 7
<p>Receiver operating characteristic (ROC) analysis of AGE in non-stimulated and stimulated saliva as well as plasma of NYHA II and NYHA III patients. Abbreviations: AGE—advanced glycation end products; NWS—non-stimulated whole saliva; NYHA II—class II in the New York Heart Association (NYHA) classification of the heart failure; NYHA III—class III in the New York Heart Association (NYHA) classification of the heart failure; SWS—stimulated whole saliva.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Issues
2.2. Patients
- NYHA II (n = 33)—patients with slight physical activity limitations—with no symptoms at rest, but in whom normal activity causes fatigue, palpitations, or shortness of breath;
- NYHA III (n = 17)—patients with significant physical activity limitations—with no symptoms at rest, but in whom activity lower than normal provokes symptoms.
2.3. Research Material
2.4. Blood Collection
2.5. Saliva Collection
2.6. Dental Examination
2.7. Salivary Protein
2.8. Salivary Amylase
2.9. Redox Assays
2.10. Antioxidant Barrier
2.11. Redox Status and ROS Production
2.12. Protein and Lipid Oxidation Products
2.13. Statistical Analysis
3. Results
3.1. Dental Examination and Salivary Gland Function
3.2. Salivary Antioxidants
3.3. Salivary Total Antioxidant/Oxidant Status
3.4. Salivary Oxidative Damage Products
3.5. Erythrocytes/Plasma Redox Biomarkers
3.6. Correlations
3.7. ROC Analysis
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ziaeian, B.; Fonarow, G.C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 2016, 13, 368–378. [Google Scholar] [CrossRef] [Green Version]
- Orso, F.; Fabbri, G.; Maggioni, A. Pietro Epidemiology of heart failure. In Handbook of Experimental Pharmacology; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Ponikowski, P.; Voors, A. 2016 Esc guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC): Developed with the special contribution. Russ. J. Cardiol. 2017, 18, 891–975. [Google Scholar] [CrossRef]
- Seferovic, P.M.; Ponikowski, P.; Anker, S.D.; Bauersachs, J.; Chioncel, O.; Cleland, J.G.F.; de Boer, R.A.; Drexel, H.; Ben Gal, T.; Hill, L.; et al. Clinical practice update on heart failure 2019: Pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2019, 21, 1169–1186. [Google Scholar] [CrossRef]
- Chen, Q.M.; Morrissy, S.; Alpert, J.S. Oxidative Stress and Heart Failure. In Comprehensive Toxicology: Third Edition; Elsevier Science: Amsterdam, The Netherlands, 2017; ISBN 9780081006122. [Google Scholar]
- Bayeva, M.; Gheorghiade, M.; Ardehali, H. Mitochondria as a therapeutic target in heart failure. J. Am. Coll. Cardiol. 2013, 61, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Van der Pol, A.; van Gilst, W.H.; Voors, A.A.; van der Meer, P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail. 2019, 21, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Maciejczyk, M.; Żebrowska, E.; Chabowski, A. Insulin Resistance and Oxidative Stress in the Brain: What’s New? Int. J. Mol. Sci. 2019, 20, 875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczurek, W.; Szyguła-Jurkiewicz, B. Oxidative stress and inflammatory markers-the future of heart failure diagnostics? Kardiochirurgia i Torakochirurgia Pol. 2015, 12, 145. [Google Scholar]
- Tsutsui, H.; Kinugawa, S.; Matsushima, S. Oxidative stress and heart failure. Am. J. Physiol. Hear. Circ. Physiol. 2011, 147, 77–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshizawa, J.M.; Schafer, C.A.; Schafer, J.J.; Farrell, J.J.; Paster, B.J.; Wong, D.T.W. Salivary biomarkers: Toward future clinical and diagnostic utilities. Clin. Microbiol. Rev. 2013, 26, 781–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maria, V.; Beniamino, P.; Andrea, M.; Carmen, L. Oxidative stress, plasma/salivary antioxidant status detection and health risk factors Vadalà Maria1, Palmieri Beniamino2, Malagoli Andrea3, Laurino Carmen4. Asian J. Med. Sci. 2017, 8, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Malathi, L.; Rajesh, E.; Aravindha Babu, N.; Jimson, S. Saliva as a diagnostic tool. Biomed. Pharmacol. J. 2016, 9. [Google Scholar] [CrossRef]
- Javaid, M.A.; Ahmed, A.S.; Durand, R.; Tran, S.D. Saliva as a diagnostic tool for oral and systemic diseases. J. Oral Biol. Craniofacial Res. 2016, 6, 61–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.Z.; Cheng, X.Q.; Li, J.Y.; Zhang, P.; Yi, P.; Xu, X.; Zhou, X.D. Saliva in the diagnosis of diseases. Int. J. Oral Sci. 2016, 8, 133–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zalewska, A.; Ziembicka, D.; Żendzian-Piotrowska, M.; Maciejczyk, M. The Impact of High-Fat Diet on Mitochondrial Function, Free Radical Production, and Nitrosative Stress in the Salivary Glands of Wistar Rats. Oxid. Med. Cell. Longev. 2019, 2019, 2606120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciejczyk, M.; Szulimowska, J.; Skutnik, A.; Taranta-Janusz, K.; Wasilewska, A.; Wiśniewska, N.; Zalewska, A. Salivary Biomarkers of Oxidative Stress in Children with Chronic Kidney Disease. J. Clin. Med. 2018, 7, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Świderska, M.; Maciejczyk, M.; Zalewska, A.; Pogorzelska, J.; Flisiak, R.; Chabowski, A. Oxidative stress biomarkers in the serum and plasma of patients with non-alcoholic fatty liver disease (NAFLD). Can plasma AGE be a marker of NAFLD? Free Radic. Res. 2019. [Google Scholar] [CrossRef]
- Kułak-Bejda, A.; Waszkiewicz, N.; Bejda, G.; Zalewska, A.; Maciejczyk, M. Diagnostic Value of Salivary Markers in Neuropsychiatric Disorders. Dis. Markers 2019, 2019, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Klimiuk, A.; Maciejczyk, M.; Choromańska, M.; Fejfer, K.; Waszkiewicz, N.; Zalewska, A. Salivary Redox Biomarkers in Different Stages of Dementia Severity. J. Clin. Med. 2019, 8, 840. [Google Scholar] [CrossRef] [Green Version]
- Sawczuk, B.; Maciejczyk, M.; Sawczuk-Siemieniuk, M.; Posmyk, R.; Zalewska, A.; Car, H. Salivary Gland Function, Antioxidant Defence and Oxidative Damage in the Saliva of Patients with Breast Cancer: Does the BRCA1 Mutation Disturb the Salivary Redox Profile? Cancers (Basel.) 2019, 11, 1501. [Google Scholar] [CrossRef] [Green Version]
- Gornitsky, M.; Velly, A.M.; Mohit, S.; Almajed, M.; Su, H.; Panasci, L.; Schipper, H.M. Altered levels of salivary 8-oxo-7-hydrodeoxyguanosine in breast cancer. JDR Clin. Transl. Res. 2016, 1, 171–177. [Google Scholar] [CrossRef]
- Zalewska, A.; Kossakowska, A.; Taranta-Janusz, K.; Zięba, S.; Fejfer, K.; Salamonowicz, M.; Kostecka-Sochoń, P.; Wasilewska, A.; Maciejczyk, M. Dysfunction of Salivary Glands, Disturbances in Salivary Antioxidants and Increased Oxidative Damage in Saliva of Overweight and Obese Adolescents. J. Clin. Med. 2020, 9, 548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fejfer, K.; Buczko, P.; Niczyporuk, M.; Ładny, J.R.; Hady, H.R.; Knaś, M.; Waszkiel, D.; Klimiuk, A.; Zalewska, A.; Maciejczyk, M. Oxidative Modification of Biomolecules in the Nonstimulated and Stimulated Saliva of Patients with Morbid Obesity Treated with Bariatric Surgery. Biomed Res. Int. 2017, 2017, 4923769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zalewska, A.; Maciejczyk, M.; Szulimowska, J.; Imierska, M.; Błachnio-Zabielska, A. High-Fat Diet Affects Ceramide Content, Disturbs Mitochondrial Redox Balance, and Induces Apoptosis in the Submandibular Glands of Mice. Biomolecules 2019, 9, 877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kołodziej, U.; Maciejczyk, M.; Miasko, A.; Matczuk, J.; Knas, M.; Zukowski, P.; Zendzian-Piotrowska, M.; Borys, J.; Zalewska, A. Oxidative modification in the salivary glands of high fat-diet induced insulin resistant rats. Front. Physiol. 2017, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Maciejczyk, M.; Kossakowska, A.; Szulimowska, J.; Klimiuk, A.; Knaś, M.; Car, H.; Niklińska, W.; Ładny, J.R.; Chabowski, A.; Zalewska, A. Lysosomal Exoglycosidase Profile and Secretory Function in the Salivary Glands of Rats with Streptozotocin-Induced Diabetes. J. Diabetes Res. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Skutnik-Radziszewska, A.; Maciejczyk, M.; Fejfer, K.; Krahel, J.; Flisiak, I.; Kołodziej, U.; Zalewska, A. Salivary Antioxidants and Oxidative Stress in Psoriatic Patients: Can Salivary Total Oxidant Status and Oxidative Status Index Be a Plaque Psoriasis Biomarker? Oxid. Med. Cell. Longev. 2020, 2020, 9086024. [Google Scholar] [CrossRef] [Green Version]
- Maciejczyk, M.; Zalewska, A.; Ładny, J.R. Salivary Antioxidant Barrier, Redox Status, and Oxidative Damage to Proteins and Lipids in Healthy Children, Adults, and the Elderly. Oxid. Med. Cell. Longev. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Knaś, M.; Maciejczyk, M.; Sawicka, K.; Hady, H.R.; Niczyporuk, M.; Ładny, J.R.; Matczuk, J.; Waszkiel, D.; Żendzian-Piotrowska, M.; Zalewska, A. Impact of morbid obesity and bariatric surgery on antioxidant/oxidant balance of the unstimulated and stimulated human saliva. J. Oral Pathol. Med. 2016, 45, 455–464. [Google Scholar] [CrossRef]
- WHO. Oral Health Surveys—Basic Methofd; World Health Organization: Geneva, Switzerland, 2013; p. 1.137. [Google Scholar]
- Lobene, R.R.; Mankodi, S.M.; Ciancio, S.G.; Lamm, R.A.; Charles, C.H.; Ross, N.M. Correlations among gingival indices: A methodology study. J Periodontol 1989, 60, 159–162. [Google Scholar] [CrossRef]
- Löe, H. The Gingival Index, the Plaque Index and the Retention Index Systems. J. Periodontol. 1967, 38, 610–616. [Google Scholar] [CrossRef]
- Walker, J.M. The Bicinchoninic Acid (BCA) Assay for Protein Quantitation. In The Protein Protocols Handbook; Humana Press: Totowa, NJ, USA, 1994; pp. 5–8. [Google Scholar]
- Maciejczyk, M.; Szulimowska, J.; Taranta-Janusz, K.; Werbel, K.; Wasilewska, A.; Zalewska, A. Salivary FRAP as A Marker of Chronic Kidney Disease Progression in Children. Antioxidants 2019, 8, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borys, J.; Maciejczyk, M.; Krȩtowski, A.J.; Antonowicz, B.; Ratajczak-Wrona, W.; Jablonska, E.; Zaleski, P.; Waszkiel, D.; Ladny, J.R.; Zukowski, P.; et al. The redox balance in erythrocytes, plasma, and periosteum of patients with titanium fixation of the jaw. Front. Physiol. 2017, 8, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [PubMed]
- Aebi, H. 13Catalase in Vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Mansson-Rahemtulla, B.; Baldone, D.C.; Pruitt, K.M.; Rahemtulla, F. Specific assays for peroxidases in human saliva. Arch. Oral Biol. 1986, 31, 661–668. [Google Scholar] [CrossRef]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar]
- Griffith, O.W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 1980, 106, 207–212. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Kobayashi, H.; Gil-Guzman, E.; Mahran, A.M.; Sharma, R.K.; Nelson, D.R.; Thomas, A.J.; Agarwal, A. Quality control of reactive oxygen species measurement by luminol-dependent chemiluminescence assay. J. Androl. 2001, 22, 568–574. [Google Scholar]
- Kalousová, M.; Skrha, J.; Zima, T. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiol. Res. 2002, 51, 597–604. [Google Scholar] [PubMed]
- Buege, J.A.; Aust, S.D. Microsomal Lipid Peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar] [PubMed]
- Tsiropoulou, S.; Dulak-Lis, M.; Montezano, A.C.; Touyz, R.M. Biomarkers of Oxidative Stress in Human Hypertension. In Hypertension and Cardiovascular Disease; Andreadis, E.A., Ed.; Springer International Publishing: Cham, UK, 2016; pp. 151–170. ISBN 978-3-319-39599-9. [Google Scholar]
- Mao, P. Oxidative Stress and Its Clinical Applications in Dementia. J. Neurodegener. Dis. 2013, 2013, 319898. [Google Scholar] [CrossRef] [PubMed]
- Peluso, I.; Raguzzini, A. Salivary and Urinary Total Antioxidant Capacity as Biomarkers of Oxidative Stress in Humans. Patholog. Res. Int. 2016, 2016, 5480267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciejczyk, M.; Heropolitanska-Pliszka, E.; Pietrucha, B.; Sawicka-Powierza, J.; Bernatowska, E.; Wolska-Kusnierz, B.; Pac, M.; Car, H.; Zalewska, A.; Mikoluc, B. Antioxidant Defense, Redox Homeostasis, and Oxidative Damage in Children With Ataxia Telangiectasia and Nijmegen Breakage Syndrome. Front. Immunol. 2019, 10, 2322. [Google Scholar] [CrossRef]
- Morris, A.A.; Ko, Y.-A.; Udeshi, E.; Jones, D.P.; Butler, J.; Quyyumi, A. Novel Biomarkers of Oxidative Stress are Associated with Risk of Death and Hospitalization in Patients with Heart Failure. J. Card. Fail. 2018, 24, S21. [Google Scholar] [CrossRef] [Green Version]
- Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 2014, 224c, 164–175. [Google Scholar] [CrossRef]
- Knaś, M.; Maciejczyk, M.; Waszkiel, D.; Zalewska, A. Oxidative stress and salivary antioxidants. Dent. Med. Probl. 2013, 50, 461–466. [Google Scholar]
- Higashi, Y.; Noma, K.; Yoshizumi, M.; Kihara, Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ. J. 2009, 73, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Żukowski, P.; Maciejczyk, M.; Waszkiel, D. Sources of free radicals and oxidative stress in the oral cavity. Arch. Oral Biol. 2018, 92, 8–17. [Google Scholar] [CrossRef]
- Day, B.J. Catalase and glutathione peroxidase mimics. Biochem. Pharmacol. 2009, 77, 285–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battino, M.; Ferreiro, M.S.; Gallardo, I.; Newman, H.N.; Bullon, P. The antioxidant capacity of saliva. J. Clin. Periodontol. 2002, 29, 189–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glantzounis, G.; Tsimoyiannis, E.; Kappas, A.; Galaris, D. Uric Acid and Oxidative Stress. Curr. Pharm. Des. 2005, 11, 4145–4151. [Google Scholar] [CrossRef] [PubMed]
- Sautin, Y.Y.; Johnson, R.J. Uric Acid: The Oxidant-Antioxidant Paradox. Nucleosides, Nucleotides and Nucleic Acids 2008, 27, 608–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hare, J.M.; Johnson, R.J. Uric acid predicts clinical outcomes in heart failure: Insights regarding the role of xanthine oxidase and uric acid in disease pathophysiology. Circulation 2003, 2003, 1951–1953. [Google Scholar] [CrossRef] [Green Version]
- Cleutjens, J.P.M.; Creemers, E.E.J.M. Integration of concepts: Cardiac extracellular matrix remodeling after myocardial infarction. J. Cardiac Fail. 2002, 8, S344–S348. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Meng, X.P.; Ramasamy, S.; Harrison, D.G.; Galis, Z.S. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro: Implications for atherosclerotic plaque stability. J. Clin. Invest. 1996, 98, 2572–2579. [Google Scholar] [CrossRef] [Green Version]
- Maciejczyk, M.; Pietrzykowska, A.; Zalewska, A.; Knaś, M.; Daniszewska, I. The Significance of Matrix Metalloproteinases in Oral Diseases. Adv. Clin. Exp. Med. 2016, 25, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Gersch, C.; Palii, S.P.; Imaram, W.; Kim, K.M.; Karumanchi, S.A.; Angerhofer, A.; Johnson, R.J.; Henderson, G.N. Reactions of peroxynitrite with uric acid: Formation of reactive intermediates, alkylated products and triuret, and in vivo production of triuret under conditions of oxidative stress. Nucleosides Nucleotides Nucleic Acids 2009, 28, 118–149. [Google Scholar] [CrossRef] [Green Version]
- Lytvyn, Y.; Perkins, B.A.; Cherney, D.Z.I. Uric Acid as a Biomarker and a Therapeutic Target in Diabetes. Can. J. Diabetes 2015, 39, 239–246. [Google Scholar] [CrossRef]
- Maciejczyk, M.; Skutnik-Radziszewska, A.; Zieniewska, I.; Matczuk, J.; Domel, E.; Waszkiel, D.; Żendzian-Piotrowska, M.; Szarmach, I.; Zalewska, A. Antioxidant Defense, Oxidative Modification, and Salivary Gland Function in an Early Phase of Cerulein Pancreatitis. Oxid. Med. Cell. Longev. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, G.H. The Secretion, Components, and Properties of Saliva. Annu. Rev. Food Sci. Technol. 2013, 4, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.G.; Newton-Cheh, C.; Almgren, P.; Struck, J.; Morgenthaler, N.G.; Bergmann, A.; Platonov, P.G.; Hedblad, B.; Engstrm, G.; Wang, T.J.; et al. Assessment of conventional cardiovascular risk factors and multiple biomarkers for the prediction of incident heart failure and atrial fibrillation. J. Am. Coll. Cardiol. 2010, 56, 1712–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devore, A.D.; Braunwald, E.; Morrow, D.A.; Duffy, C.I.; Ambrosy, A.P.; Chakraborty, H.; McCague, K.; Rocha, R.; Velazquez, E.J. Initiation of Angiotensin-Neprilysin Inhibition after Acute Decompensated Heart Failure: Secondary Analysis of the Open-label Extension of the PIONEER-HF Trial. JAMA Cardiol. 2019, 5, 202–207. [Google Scholar] [CrossRef]
- Wachter, R.; Senni, M.; Belohlavek, J.; Straburzynska-Migaj, E.; Witte, K.K.; Kobalava, Z.; Fonseca, C.; Goncalvesova, E.; Cavusoglu, Y.; Fernandez, A.; et al. Initiation of sacubitril/valsartan in haemodynamically stabilised heart failure patients in hospital or early after discharge: Primary results of the randomised TRANSITION study. Eur. J. Heart Fail. 2019, 21, 998–1007. [Google Scholar] [CrossRef] [Green Version]
- Greene, S.J.; Butler, J.; Albert, N.M.; DeVore, A.D.; Sharma, P.P.; Duffy, C.I.; Hill, C.L.; McCague, K.; Mi, X.; Patterson, J.H.; et al. Medical Therapy for Heart Failure With Reduced Ejection Fraction: The CHAMP-HF Registry. J. Am. Coll. Cardiol. 2018, 72, 351–366. [Google Scholar] [CrossRef]
Patient Characteristics | Control n = 50 | NYHA II n = 33 | NYHA III n = 17 | ANOVA p | |
---|---|---|---|---|---|
Gender | Male n (%) | 43 (86) | 29 (87.88) | 14 (82.35) | NA |
Female n (%) | 7 (14) | 4 (12.12) | 3 (17.65) | NA | |
Age | 67.57 ± 1.11 | 64.2 ± 1.69 | 69.35 ± 2.57 | 0.069 | |
WBC (x 103/µL) | 7.4 ± 0.16 | 7.25 ± 0.32 | 8.25 ± 0.46 | 0.068 | |
RBC (x 106/µL) | 4.5 ± 0.06 | 4.72 ± 0.30 | 4.41 ± 0.13 | 0.573 | |
HGB (g/dL) | 14.07 ± 0.36 | 13.41 ± 0.27 | 13.4 ± 0.34 | 0.494 | |
HCT (%) | 39 ± 0.43 | 39.77± 0.78 | 39.04 ± 0.99 | 0.552 | |
MCV (fL) | 91.2 ± 0.60 | 90.97 ± 1.15 | 88.86 ± 1.37 | 0.373 | |
MCH (pg) | 33.62 ± 0.34 | 30.73 ± 0.50 | 29.69 ± 0.56 * | <0.001 | |
MCHC (g/dL) | 34.5 ± 0.36 | 33.75 ± 0.96 | 33.39 ± 0.56 | 0.059 | |
RDW-SD (fL) | 45.54 ± 0.16 | 46.56 ± 0.94 | 47.52 ± 0.95 | 0.091 | |
RDV-CV (%) | 14.9 ± 0.19 | 13.99 ± 0.27 | 14.71 ± 0.44 | 0.066 | |
PLT (x103/µL) | 249 ± 1.79 | 187.4 ± 7.84 * | 203.7 ± 15.44 | <0.001 | |
CRP (mg/L) | 2.9 ± 0.2 | 3.2 ± 0.64 | 3.5 ± 0.85 | 0.308 | |
Na+ (mmol/L) | 139.2 ± 0.62 | 138.5 ± 0.45 | 136.6 ± 0.85 | 0.229 | |
K+ (mmol/L) | 4.2 ± 0.1 | 4.67 ± 0.10 | 4.74 ± 0.14 | 0.06 | |
Creatinine (mg/dL) | 0.9 ± 0.02 | 1.07 ± 0.06 | 1.32 ± 0.06 | 0.051 | |
GFR (ml/min) | 86. 03 ± 2.44 | 82.92 ± 0.59 | 72.33 ± 0.79 | 0.057 | |
TSH (µIU/mL) | 1.08 ± 0.03 | 1.03 ± 0.13 | 1.38 ± 0.30 | 0.06 | |
FT3 (pg/mL) | 2.31 ± 0.06 | 2.42 ± 0.11 | 2.29 ± 0.10 | 0.315 | |
Vit. D3 (ng/mL) | 24.3 ± 0.69 | 18.16 ± 1.41 * | 15.07 ± 2.17 * | <0.001 | |
AST (IU/L) | 20.04 ± 0.87 | 23.46 ± 1.36 | 23.8 ± 1.83 | 0.06 | |
Glucose (mg/dL) | 91.5 ± 2.5 | 99.96 ± 3.83 | 99.8 ± 2.35 | 0.08 | |
NT-proBNP (pg/mL) | ND | 1831 ± 173 | 4128 ± 382 | <0.001 # | |
EF | ND | 25.9 ± 1.24 | 19.24 ± 1.31 | 0.001 # | |
RR (mmHg) | SBP | 125.3 ± 0.33 | 130.6 ± 3.81 | 123.2 ± 3.67 | 0.112 |
DBP | 71.3 ± 0.61 | 75.97 ± 2.16 | 74.94 ± 1.99 | 0.06 | |
HR | ND | 70.97 ± 2.20 | 75.94 ± 2.59 | NA | |
Type 2 diabetes n (%) | 6 (12) | 2 (11.76) | 4 (23.53) | NA | |
Cardiac dysrhythmia (atrial flutter and fibrillation) n (%) | - | 10 (30.30) | 10 (58.82) | NA | |
Coronary artery disease n (%) | - | 14 (42.42) | 6 (35.29) | NA | |
Hypercholesterolemia n (%) | - | 22 (66.67) | 13 (76.47) | NA | |
Myocardial infarction n (%) | - | 5 (15.15) | 1 (5.88) | NA | |
Hypertension n (%) | 17 (34) | 26 (78.79) | 12 (70.59) | NA | |
Medications | ASA n (%) | 4 (8) | 16 (48.48) | 6 (35.29) | NA |
Alpha receptor blocker n (%) | - | 3 (9.09) | 2 (11.76) | NA | |
Beta receptor blocker n (%) | 6 (12) | 26 (78.79) | 15 (88.24) | NA | |
Ca2+ channel blocker n (%) | 4 (8) | 9 (27.27) | 6 (35.29) | NA | |
AT1- receptor blocker n (%) | - | 7 (21.21) | 8 (47.1) | NA | |
Diuretics n (%) | 10 (20) | 27 (81.82) | 17 (100) | NA | |
ACE n (%) | 7 (14) | 19 (57.58) | 9 (52.94) | NA | |
Cardiac glycosides n (%) | - | 4 (12.12) | 2 (11.76) | NA | |
Organic nitrate n (%) | - | 1 (3.03) | 0 (0) | NA | |
Statins n (%) | 8 (16) | 19 (57.58) | 9 (52.94) | NA |
Patient Characteristics | Control n = 50 | NYHA II n = 33 | NYHA III n = 17 | ANOVA p |
---|---|---|---|---|
NWS flow rate (mL/min) | 0.38 ± 0.01 | 0.27 ± 0.02 * | 0.25 ± 0.02 * | <0.001 |
SWS flow rate (mL/min) | 1.28 ± 0.02 | 0.79 ± 0.07 * | 0.76 ± 0.07 * | <0.001 |
NWS total protein (μg/mL) | 1352 ± 62.73 | 1094 ± 63.84 * | 8865 ± 67.08 * | <0.001 |
SWS total protein (μg/mL) | 1014 ± 57.36 | 1023 ± 56.12 | 1309 ± 142.8 | 0.09 |
Salivary amylase NWS (µmol/mg protein) | 0.2 ± 0.01 | 0.08 ± 0.01 * | 0.13 ± 0.01 * | <0.001 |
Salivary amylase SWS (µmol/mg protein) | 0.27 ± 0.02 | 0.17 ± 0.01 * | 0.18 ± 0.01 | 0.01 |
DMFT | 29.32 ± 0.53 | 29.96 ± 0.89 | 30.09 ± 0.69 | NS |
PBI | 2.09 ± 0.07 | 2.12 ± 0.27 | 2.07 ± 0.24 | 0.92 |
GI | 2.05 ± 0.06 | 2.06 ± 0.15 | 2.18 ± 0.14 | 0.71 |
CR | 0.78 ± 0.73 | 0.63 ± 0.1 | 0.7 ± 0.48 | 0.91 |
NWS | SWS | Plasma/Erythrocytes | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | AUC | 95% Confidence Interval | p Value | Cutt-off | Sensitivity (%) | Specificity (%) | AUC | 95% Confidence Interval | p Value | Cut-off | Sensitivity (%) | Specificity (%) | AUC | 95% Confidence Interval | p Value | Cut-off | Sensitivity (%) | Specificity (%) |
Antioxidants | ||||||||||||||||||
SOD (mU/mg protein) | 0.5526 | 0.3788 to 0.7263 | 0.5457 | > 5.616 | 57.58 | 58.82 | 0.6952 | 0.5457 to 0.8446 | 0.0249 | > 7.742 | 57.58 | 58.82 | 0.5544 | 0.3678 to 0.7409 | 0.5322 | > 0.6417 | 57.58 | 58.82 |
CAT (nmol H2O2/min/mg protein) | 0.6061 | 0.4246 to 0.7875 | 0.223 | < 0.72 | 57.58 | 58.82 | 0.6894 | 0.5316 to 0.8472 | 0.033 | > 0.4727 | 63.64 | 62.5 | 0.6176 | 0.4517 to 0.7836 | 0.1765 | > 0.3321 | 57.58 | 58.82 |
Px/GPx (mU/mg protein) | 0.5686 | 0.4024 to 0.7349 | 0.4304 | < 0.2229 | 57.58 | 58.82 | 0.5561 | 0.3737 to 0.7386 | 0.5189 | > 0.4433 | 57.58 | 58.82 | 0.6791 | 0.5257 to 0.8325 | 0.0396 | < 0.1417 | 63.64 | 64.71 |
GSH (ug/mg protein) | 0.5918 | 0.4334 to 0.7502 | 0.2916 | < 0.8745 | 57.58 | 58.82 | 0.574 | 0.4062 to 0.7417 | 0.3954 | > 0.8199 | 57.58 | 58.82 | 0.6239 | 0.4368 to 0.8109 | 0.1546 | < 3.37 | 57.58 | 58.82 |
UA (ng/mg protein) | 0.7219 | 0.5818 to 0.862 | 0.0108 | < 88.53 | 69.7 | 70.59 | 0.5152 | 0.34 to 0.6903 | 0.8618 | > 104.2 | 42.42 | 41.18 | 0.852 | 0.748 to 0.9561 | <0.0001 | < 0.7263 | 75.76 | 76.47 |
Total antioxidant/oxidant status | ||||||||||||||||||
TAC (Trolox umol/mg protein) | 0.6667 | 0.4881 to 0.8453 | 0.0555 | < 0.5182 | 57.58 | 58.82 | 0.6275 | 0.4644 to 0.7905 | 0.1431 | > 0.3163 | 63.64 | 64.71 | 0.5686 | 0.3907 to 0.7465 | 0.4304 | > 1.475 | 51.52 | 58.82 |
TOS (nmol H2O2/min/mg protein) | 0.6916 | 0.5459 to 0.8373 | 0.0277 | < 58.8 | 57.58 | 58.82 | 0.5152 | 0.3393 to 0.691 | 0.8618 | < 61.38 | 48.48 | 47.06 | 0.5205 | 0.354 to 0.687 | 0.8138 | > 15.14 | 57.58 | 58.82 |
OSI (TOS/TAC ratio) | 0.5312 | 0.358 to 0.7044 | 0.72 | > 132.6 | 51.52 | 52.94 | 0.6078 | 0.435 to 0.7807 | 0.2153 | < 195.3 | 57.58 | 58.82 | 0.5116 | 0.3448 to 0.6784 | 0.8941 | > 10.03 | 51.52 | 52.94 |
ROS production (nmol O2-/min/mg protein | 0.877 | 0.7811 to 0.9729 | <0.0001 | < 14.49 | 81.82 | 82.35 | 0.5526 | 0.3832 to 0.7219 | 0.5457 | > 15.96 | 54.55 | 52.94 | ND | ND | ND | ND | ND | ND |
Oxidative damage products | ||||||||||||||||||
AGE (AFU/mg protein) | 0.9251 | 0.8565 to 0.9937 | <0.0001 | < 9.3 | 81.82 | 82.35 | 0.5936 | 0.4192 to 0.7679 | 0.2823 | > 8.173 | 54.55 | 52.94 | 0.9287 | 0.8582 to 0.9992 | ˂0.0001 | < 7.028 | 81.82 | 82.35 |
AOPP (nmol/mg protein) | 0.7879 | 0.653 to 0.9228 | 0.0009 | < 52.89 | 69.7 | 70.59 | 0.8948 | 0.8039 to 0.9858 | <0.0001 | < 38.69 | 81.82 | 82.35 | 0.5294 | 0.3548 to 0.704 | 0.7354 | > 7.937 | 57.58 | 58.82 |
MDA (umol/mg protein) | 0.8699 | 0.7727 to 0.9671 | <0.0001 | < 349.1 | 78.79 | 76.47 | 0.5722 | 0.4005 to 0.7439 | 0.4069 | > 651.3 | 54.55 | 52.94 | 0.9804 | 0.9491 to 1.012 | ˂0.0001 | < 498.8 | 93.94 | 94.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimiuk, A.; Zalewska, A.; Sawicki, R.; Knapp, M.; Maciejczyk, M. Salivary Oxidative Stress Increases with the Progression of Chronic Heart Failure. J. Clin. Med. 2020, 9, 769. https://doi.org/10.3390/jcm9030769
Klimiuk A, Zalewska A, Sawicki R, Knapp M, Maciejczyk M. Salivary Oxidative Stress Increases with the Progression of Chronic Heart Failure. Journal of Clinical Medicine. 2020; 9(3):769. https://doi.org/10.3390/jcm9030769
Chicago/Turabian StyleKlimiuk, Anna, Anna Zalewska, Robert Sawicki, Małgorzata Knapp, and Mateusz Maciejczyk. 2020. "Salivary Oxidative Stress Increases with the Progression of Chronic Heart Failure" Journal of Clinical Medicine 9, no. 3: 769. https://doi.org/10.3390/jcm9030769
APA StyleKlimiuk, A., Zalewska, A., Sawicki, R., Knapp, M., & Maciejczyk, M. (2020). Salivary Oxidative Stress Increases with the Progression of Chronic Heart Failure. Journal of Clinical Medicine, 9(3), 769. https://doi.org/10.3390/jcm9030769