A New Tool Supporting the Selection of the Best Hematopoietic Stem Cell Donor by Modelling Local Own Real-World Data
<p>Scatterplots of patient and donors ages by HLA match types. The X axis represents the age of the donor, while the Y axis represents the age of the patient. Each point represents a donor–patient pair and is color-coded: HLA-identical sibling (blue), unrelated donor (red), haploidentical donor (green).</p> "> Figure 2
<p>Significant factors influencing 2-year OS and their interactions. Visual representation of the statistically significant factors having an impact on 2-year OS following HSCT. Significant main variables are diagnosis, comorbidity, and age, with <span class="html-italic">p</span>-values of 0.011, 0.000, and 0.020, respectively. Donor type and donor age are not statistically significant as independent predictors of outcome; however, they are as interactions. Indeed, HLA × Age (i.e., patient age) and HLA × Age donor have <span class="html-italic">p</span>-values of 0.012 and 0.048, respectively, indicating that the effect of the patient and donor age depends on the HLA matching between patient and donor, that is here the donor type.</p> "> Figure 3
<p>An example of calculator output for a defined patient and four stem cell donor options. The hypothetical patient is 45 years old and is affected by acute leukemia in first complete remission. There are four donor options during the search: a 45-year-old HLA-identical sibling, a 30-year-old unrelated donor, a 20-year-old haploidentical donor, a 45-year-old haploidentical donor. Hazard ratios of 2-year OS and 95% confidence intervals are shown on the right panel for each of the four donors.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Retrieval
2.2. Statistical Analysis
2.3. Calculator Output
3. Results
3.1. Main Patient, Transplant and Donor Characteristics
3.2. Donor Type and Age
3.3. Building the Model: Regression Analysis of Survival Predictors
3.4. Example of Calculator
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Passweg, J.R.; Baldomero, H.; Ciceri, F.; de la Cámara, R.; Glass, B.; Greco, R.; Hazenberg, M.D.; Kalwak, K.; McLornan, D.P.; Neven, B.; et al. Hematopoietic cell transplantation and cellular therapies in Europe 2022. CAR-T activity continues to grow; transplant activity has slowed: A report from the EBMT. Bone Marrow Transpl. 2024; Online ahead of print. [Google Scholar] [CrossRef]
- Lee, S.J.; Klein, J.; Haagenson, M.; Baxter-Lowe, L.A.; Confer, D.L.; Eapen, M.; Fernandez-Vina, M.; Flomenberg, N.; Horowitz, M.; Hurley, C.K.; et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood 2007, 110, 4576–4583. [Google Scholar] [CrossRef] [PubMed]
- Shouval, R.; A Fein, J.; Labopin, M.; Kröger, N.; Duarte, R.F.; Bader, P.; Chabannon, C.; Kuball, J.; Basak, G.W.; Dufour, C.; et al. Outcomes of allogeneic haematopoietic stem cell transplantation from HLA-matched and alternative donors: A European Society for Blood and Marrow Transplantation registry retrospective analysis. Lancet Haematol. 2019, 6, e573–e584. [Google Scholar] [CrossRef] [PubMed]
- Shaw, B.E.; Logan, B.R.; Spellman, S.R.; Marsh, S.G.; Robinson, J.; Pidala, J.; Hurley, C.; Barker, J.; Maiers, M.; Dehn, J.; et al. Development of an Unrelated Donor Selection Score Predictive of Survival after HCT: Donor Age Matters Most. Biol. Blood Marrow Transpl. 2018, 24, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Fleischhauer, K.; Tran, T.H.; Meisel, R.; Mytilineos, J.; Dreger, P.; Kröger, N. Donor Selection for Allogeneic Hematopoietic Cell Transplantation. Dtsch. Arztebl. Int. 2023, 120, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Kollman, C.; Spellman, S.R.; Zhang, M.J.; Hassebroek, A.; Anasetti, C.; Antin, J.H.; Champlin, R.E.; Confer, D.L.; DiPersio, J.F.; Fernandez-Viña, M.; et al. The effect of donor characteristics on survival after unrelated donor transplantation for hematologic malignancy. Blood 2016, 127, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Mangum, D.S.; Caywood, E. A clinician’s guide to HLA matching in allogeneic hematopoietic stem cell transplant. Hum. Immunol. 2022, 83, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Servais, S.; Porcher, R.; Xhaard, A.; Robin, M.; Masson, E.; Larghero, J.; Ribaud, P.; Dhedin, N.; Abbes, S.; Sicre, F.; et al. Pre-transplant prognostic factors of long-term survival after allogeneic peripheral blood stem cell transplantation with matched related/unrelated donors. Haematologica 2014, 99, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Kröger, N.; Zabelina, T.; de Wreede, L.; Berger, J.; Alchalby, H.; van Biezen, A.; Milpied, N.; Volin, L.; Mohty, M.; Leblond, V.; et al. Allogeneic stem cell transplantation for older advanced MDS patients: Improved survival with young unrelated donor in comparison with HLA-identical siblings. Leukemia 2013, 27, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, H.S.; Finke, J. Mismatched unrelated alternative donors for hematological malignancies. Semin. Hematol. 2016, 53, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Timofeeva, O.A.; Philogene, M.C.; Zhang, Q.J. Current donor selection strategies for allogeneic hematopoietic cell transplantation. Hum. Immunol. 2022, 83, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Azari, M.; Barkhordar, M.; Bahri, T.; Rad, S.; Fumani, H.K.; Mousavi, S.A.; Shiraji, S.T.; Azari, M.; Shafaroudi, P.; Vaezi, M. Determining the predictive impact of donor parity on the outcomes of human leukocyte antigen matched hematopoietic stem cell transplants: A retrospective, single-center study. Front. Oncol. 2024, 14, 1339605. [Google Scholar] [CrossRef]
- Boeckh, M.; Nichols, W.G. The impact of cytomegalovirus serostatus of donor and recipient before hematopoietic stem cell transplantation in the era of antiviral prophylaxis and preemptive therapy. Blood 2004, 103, 2003–2008. [Google Scholar] [CrossRef] [PubMed]
- Ljungman, P.; de la Camara, R.; Robin, C.; Crocchiolo, R.; Einsele, H.; A Hill, J.; Hubacek, P.; Navarro, D.; Cordonnier, C.; Ward, K.N. Guidelines for the management of cytomegalovirus infection in patients with haematological malignancies and after stem cell transplantation from the 2017 European Conference on Infections in Leukaemia (ECIL 7). Lancet Infect. Dis. 2017, 19, e260–e272. [Google Scholar] [CrossRef] [PubMed]
- Worel, N. AB0-mismatched allogeneic hematopoietic stem cell transplantation. Transfus. Med. Hemother. 2016, 43, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cortese, G.; Combescure, C.; Marshall, R.; Lee, M.; Lim, H.J.; Haller, B. Overview of model validation for survival regression model with competing risks using melanoma study data. Ann. Transl. Med. 2018, 6, 325. [Google Scholar] [CrossRef] [PubMed]
- Graf, E.; Schmoor, C.; Sauerbrei, W.; Schumacher, M. Assessment and comparison of prognostic classification schemes for survival data. Stat. Med. 1999, 18, 2529–2545. [Google Scholar] [CrossRef]
- Brier, G.W. Verification of forecasts expressed in terms of probability. Mon. Weather. Rev. 1950, 78, 1–3. [Google Scholar] [CrossRef]
- Logan, B.R.; Maiers, M.J.; Sparapani, R.A.; Laud, P.W.; Spellman, S.R.; McCulloch, R.E.; Shaw, B.E. Optimal Donor Selection for Hematopoietic Cell Transplantation Using Bayesian Machine Learning. JCO Clin. Cancer Inform. 2021, 5, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Shouval, R.; Labopin, M.; Bondi, O.; Mishan-Shamay, H.; Shimoni, A.; Ciceri, F.; Esteve, J.; Giebel, S.; Gorin, N.C.; Schmid, C.; et al. Prediction of allogeneic hematopoietic stem-cell transplantation mortality 100 days after transplantation using a machine learning algorithm: A European group for blood and marrow transplantation acute leukemia working party retrospective data mining study. J. Clin. Oncol. 2015, 33, 3144–3151. [Google Scholar] [CrossRef] [PubMed]
- Crocchiolo, R.; Cornacchini, G.; Lando, G.; Coviello, A.; Cuppari, I.; Volpato, E.; Pugliano, M.T.; Grillo, G.; Zucchetti, E.; Rossini, S. The number of HLA confirmatory tests during unrelated donor search as a driver for the evaluation of back-up haploidentical donor(s). Transfus. Apher. Sci. 2020, 59, 102766. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | Number of Patients | Identical Sibling | Matched Unrelated | Haploidentical |
---|---|---|---|---|
Number of patients | 737 | 218 | 198 | 321 |
Gender | ||||
Male | 431 | 130 | 112 | 188 |
Female | 306 | 88 | 86 | 133 |
Median age at transplantation (range) | 48 (21–71) | 48 (21–71) | 50 (22–71) | 49 (21–68) |
HLA match | ||||
Identical sibling | 218 | 218 | - | - |
Matched unrelated | 198 | - | 198 | - |
Haploidentical | 321 | - | - | 321 |
Diagnosis * | ||||
Group 1 | 306 | 107 | 96 | 102 |
Group 2 | 114 | 26 | 44 | 44 |
Group 3 | 317 | 85 | 58 | 175 |
Median Karnofsky score | 87.7 | 85.4 | 88.4 | 89.7 |
Karnofsky score >90% at HSCT | 446 | 105 | 129 | 212 |
Positive CMV serostatus | 684 | 228 | 171 | 285 |
Negative CMV serostatus | 53 | 15 | 18 | 20 |
Total comorbidities | ||||
No comorbidity | 423 | 152 | 110 | 161 |
1 comorbidity | 256 | 51 | 71 | 134 |
>2 comorbidities | 58 | 15 | 17 | 26 |
Donor Characteristics | Number of Donors | Identical Sibling | Matched Unrelated | Haploidentical |
Median age at donation (range) | 40 (19–58) | 46 (30–57) | 32 (19–48) | 41 (19–58) |
Gender | ||||
Male | 500 | 145 | 151 | 204 |
Female | 231 | 72 | 47 | 112 |
missing | 6 | 1 | 0 | 5 |
Positive CMV serostatus | 556 | 183 | 128 | 245 |
Negative CMV serostatus | 181 | 35 | 70 | 76 |
Predictor | Coefficient | Standard Error | Z Value | p Value | Lower CI | Upper CI |
---|---|---|---|---|---|---|
Intercept | 7.35820 | 0.239108 | 30.77 | 0.000 | 6.88956 | 7.82684 |
Diagnosis_1 * | ||||||
2 | 1.23406 | 0.516391 | 2.39 | 0.017 | 0.221949 | 2.24616 |
3 | 0.603906 | 0.271176 | 2.23 | 0.026 | 0.0724101 | 1.13540 |
HLA_1 ** | ||||||
2 | 0.267212 | 0.354110 | 0.75 | 0.450 | −0.426830 | 0.961255 |
3 | −0.0726015 | 0.292851 | −0.25 | 0.804 | −0.646578 | 0.501375 |
Age patient | 0.0164252 | 0.0076519 | 2.15 | 0.032 | 0.0014279 | 0.0314226 |
Age donor | −0.0090390 | 0.0077637 | −1.16 | 0.244 | −0.0242556 | 0.0061776 |
Age_patient × Diagnosis_1 | ||||||
2 | −0.0189244 | 0.0079260 | −2.39 | 0.017 | −0.0344590 | −0.0033898 |
3 | −0.0055234 | 0.0050316 | −1.10 | 0.272 | −0.0153852 | 0.0043383 |
HLA_1 × Age patient | ||||||
2 | −0.0269508 | 0.0092053 | −2.93 | 0.003 | −0.0449929 | −0.0089097 |
3 | −0.0150409 | 0.0078692 | −1.91 | 0.056 | −0.0304643 | 0.0043383 |
HLA_1 × Age donor | ||||||
2 | 0.0231561 | 0.0099341 | 2.33 | 0.020 | 0.0036856 | 0.0426266 |
3 | 0.0147905 | 0.0074005 | 2.00 | 0.046 | 0.0002859 | 0.0292951 |
Diagnosis_1 × Age donor | ||||||
2 | −0.0045711 | 0.0072265 | −0.63 | 0.527 | −0.0187347 | 0.0095926 |
3 | −0.0023857 | 0.0050394 | −0.47 | 0.636 | −0.0122628 | 0.0074914 |
Shape | 1.69843 | 0.0654468 | 1.57488 | 1.83167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crocchiolo, R.; Cacace, S.; Milone, G.; Sarina, B.; Cupri, A.; Leotta, S.; Giuffrida, G.; Spadaro, A.; Mariotti, J.; Bramanti, S.; et al. A New Tool Supporting the Selection of the Best Hematopoietic Stem Cell Donor by Modelling Local Own Real-World Data. J. Clin. Med. 2024, 13, 6869. https://doi.org/10.3390/jcm13226869
Crocchiolo R, Cacace S, Milone G, Sarina B, Cupri A, Leotta S, Giuffrida G, Spadaro A, Mariotti J, Bramanti S, et al. A New Tool Supporting the Selection of the Best Hematopoietic Stem Cell Donor by Modelling Local Own Real-World Data. Journal of Clinical Medicine. 2024; 13(22):6869. https://doi.org/10.3390/jcm13226869
Chicago/Turabian StyleCrocchiolo, Roberto, Stefania Cacace, Giuseppe Milone, Barbara Sarina, Alessandra Cupri, Salvatore Leotta, Giulia Giuffrida, Andrea Spadaro, Jacopo Mariotti, Stefania Bramanti, and et al. 2024. "A New Tool Supporting the Selection of the Best Hematopoietic Stem Cell Donor by Modelling Local Own Real-World Data" Journal of Clinical Medicine 13, no. 22: 6869. https://doi.org/10.3390/jcm13226869
APA StyleCrocchiolo, R., Cacace, S., Milone, G., Sarina, B., Cupri, A., Leotta, S., Giuffrida, G., Spadaro, A., Mariotti, J., Bramanti, S., Fumagalli, A., Azzaro, M. P., Toscano, S., & Semeraro, Q. (2024). A New Tool Supporting the Selection of the Best Hematopoietic Stem Cell Donor by Modelling Local Own Real-World Data. Journal of Clinical Medicine, 13(22), 6869. https://doi.org/10.3390/jcm13226869