Feasibility and Safety of the Routine Distal Transradial Approach in the Anatomical Snuffbox for Coronary Procedures: The ANTARES Randomized Trial
"> Figure 1
<p>Study flow chart. TRA = transradial approach; CKD = chronic kidney disease; MI = myocardial infarction.</p> "> Figure 2
<p>Selected study outcomes for the intention-to-treat and treatment-per-protocol analyses. The primary composite endpoint consisted of access crossover, major adverse cardiovascular events, and access-related vascular complications. RAO = radial artery occlusion; MACE = major adverse cardiac and cerebrovascular events.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Population
2.2. Ultrasonography
2.3. Radial Access
2.4. Follow-Up and Study Endpoints
2.5. Statistical Analysis
2.6. Sample Size Calculation
3. Results
3.1. Study Population
3.2. Procedural Data
3.3. Primary Endpoint
3.4. Clinical Success Endpoints
3.5. Access-Site Complications Endpoints
3.6. Exploratory Outcomes
4. Discussion
4.1. Access Failure
4.2. Access Duration
4.3. Radial Artery Occlusion
4.4. Other Access-Related Complications
4.5. Exploratory Outcomes
4.6. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masoudi, F.A.; Ponirakis, A.; de Lemos, J.A.; Jollis, J.G.; Kremers, M.; Messenger, J.C.; Moore, J.W.; Moussa, I.; Oetgen, W.J.; Varosy, P.D.; et al. Trends in U.S. Cardiovascular Care: 2016 Report From 4 ACC National Cardiovascular Data Registries. J. Am. Coll. Cardiol. 2017, 69, 1427–1450. [Google Scholar] [CrossRef]
- Mason, P.J.; Shah, B.; Tamis-Holland, J.E.; Bittl, J.A.; Cohen, M.G.; Safirstein, J.; Drachman, D.E.; Valle, J.A.; Rhodes, D.; Gilchrist, I.C.; et al. An Update on Radial Artery Access and Best Practices for Transradial Coronary Angiography and Intervention in Acute Coronary Syndrome: A Scientific Statement From the American Heart Association. Circ. Cardiovasc. Interv. 2018, 11, e000035. [Google Scholar] [CrossRef]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.D.; Hong, J.A.; Lee, B.Y.; Umscheid, C.A.; Bartsch, S.M.; Don, C.W. Systematic Review and Cost–Benefit Analysis of Radial Artery Access for Coronary Angiography and Intervention. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, G.; Rao, S.V.; Jüni, P.; Da Costa, B.R.; Reimers, B.; Condorelli, G.; Anzuini, A.; Jolly, S.S.; Bertrand, O.F.; Krucoff, M.W.; et al. Radial Versus Femoral Access for Coronary Interventions Across the Entire Spectrum of Patients with Coronary Artery Disease: A Meta-Analysis of Randomized Trials. JACC Cardiovasc. Interv. 2016, 9, 1419–1434. [Google Scholar] [CrossRef] [PubMed]
- Kiemeneij, F. Left distal transradial access in the anatomical snuffbox for coronary angiography (ldTRA) and interventions (ldTRI). EuroIntervention 2017, 13, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Eid-Lidt, G.; Rodríguez, A.R.; Castellanos, J.J.; Pasos, J.I.F.; López, K.E.E.; Gaspar, J. Distal Radial Artery Approach to Prevent Radial Artery Occlusion Trial. JACC Cardiovasc. Interv. 2021, 14, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Achim, A.; Kákonyi, K.; Jambrik, Z.; Nagy, F.; Tóth, J.; Sasi, V.; Hausinger, P.; Nemes, A.; Varga, A.; Bertrand, O.F.; et al. Distal Radial Artery Access for Coronary and Peripheral Procedures: A Multicenter Experience. J. Clin. Med. 2021, 10, 5974. [Google Scholar] [CrossRef] [PubMed]
- Koutouzis, M.; Kontopodis, E.; Tassopoulos, A.; Tsiafoutis, I.; Katsanou, K.; Rigatou, A.; Didagelos, M.; Andreou, K.; Lazaris, E.; Oikonomidis, N.; et al. Distal Versus Traditional Radial Approach for Coronary Angiography. Cardiovasc. Revascularization Med. 2019, 20, 678–680. [Google Scholar] [CrossRef] [PubMed]
- Vefalı, V.; Sarıçam, E. The Comparison of Traditional Radial Access and Novel Distal Radial Access for Cardiac Catheterization. Cardiovasc. Revascularization Med. 2020, 21, 496–500. [Google Scholar] [CrossRef]
- Aoi, S.; Htun, W.W.; Freeo, S.; Lee, S.; Kyaw, H.; Alfaro, V.; Coppola, J.; Pancholy, S.; Kwan, T. Distal transradial artery access in the anatomical snuffbox for coronary angiography as an alternative access site for faster hemostasis. Catheter. Cardiovasc. Interv. 2019, 94, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, J.J.; Zebrauskaite, A.; Arnous, S.; Kiernan, T.J. Left distal trans-radial access facilitates earlier discharge post-coronary angiography. J. Interv. Cardiol. 2018, 31, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.D.P.; Navarro, E.C.; Kiemeneij, F. Distal transradial access as default approach for coronary angiography and interventions. Cardiovasc. Diagn. Ther. 2019, 9, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Bhambhani, A.; Pandey, S.; Nadamani, A.N.; Tyagi, K. An observational comparison of distal radial and traditional radial approaches for coronary angiography. J. Saudi Heart Assoc. 2020, 32, 17. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, J.-W.; Lee, S.Y.; Bae, J.-W.; Jeong, M.H.; Lee, S.-H.; Ahn, Y. Feasibility of primary percutaneous coronary intervention via the distal radial approach in patients with ST-elevation myocardial infarction. Korean J. Intern. Med. 2020, 36, S53–S61. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, G.L.; Garbo, R.; Gagnor, A.; Oreglia, J.; Mazzarotto, P. First prospective multicentre experience with left distal transradial approach for coronary chronic total occlusion interventions using a 7 Fr Glidesheath Slender. EuroIntervention 2019, 15, 126–128. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-W.; Park, S.W.; Son, J.-W.; Ahn, S.-G.; Lee, S.-H. Real-world experience of the left distal transradial approach for coronary angiography and percutaneous coronary intervention: A prospective observational study (LeDRA). EuroIntervention 2018, 14, e995–e1003. [Google Scholar] [CrossRef]
- Bertrand, O.F.; Rodés-Cabau, J.; Larose, É.; Nguyen, C.M.; Roy, L.; Déry, J.-P.; Courtis, J.; Nault, I.; Poirier, P.; Costerousse, O.; et al. One-year clinical outcome after abciximab bolus-only compared with abciximab bolus and 12-hour infusion in the Randomized EArly Discharge after Transradial Stenting of CoronarY Arteries (EASY) Study. Am. Heart J. 2008, 156, 135–140. [Google Scholar] [CrossRef]
- Bernat, I.; Aminian, A.; Pancholy, S.; Mamas, M.; Gaudino, M.; Nolan, J.; Gilchrist, I.C.; Saito, S.; Hahalis, G.N.; Ziakas, A.; et al. Best Practices for the Prevention of Radial Artery Occlusion After Transradial Diagnostic Angiography and Intervention: An International Consensus Paper. JACC Cardiovasc. Interv. 2019, 12, 2235–2246. [Google Scholar] [CrossRef]
- Achim, A.; Szigethy, T.; Olajos, D.; Molnár, L.; Papp, R.; Bárczi, G.; Kákonyi, K.; Édes, I.F.; Becker, D.; Merkely, B.; et al. Switching from Proximal to Distal Radial Artery Access for Coronary Chronic Total Occlusion Recanalization. Front. Cardiovasc. Med. 2022, 9, 895457. [Google Scholar] [CrossRef]
- Achim, A.; Péter, O.; Kákonyi, K.; Sasi, V.; Nemes, A.; Homorodean, C.; Stanek, A.; Olinic, D.M.; Ruzsa, Z. The Role of Ultrasound in Accessing the Distal Radial Artery at the Anatomical Snuffbox for Cardiovascular Interventions. Life 2023, 13, 25. [Google Scholar] [CrossRef] [PubMed]
Snuffbox Group n = 200 | Conventional Group n = 200 | p-Value | |
---|---|---|---|
Demographics | |||
Age, years; M (IQR) | 67.0 (61.0–73.5) | 66.7 (60.0–75.0) | 0.98 |
Female; N (%) | 80 (40.0) | 79 (39.5) | 0.92 |
Height, m; M (IQR) | 1.67 (1.60–1.74) | 1.68 (1.60–1.75) | 0.45 |
Weight, kg; M (IQR) | 82.5 (70–96) | 82.7 (72–94) | 0.47 |
Body mass index, kg/m2; M (IQR) | 29.7 (26–34) | 28.4 (26–32) | 0.12 |
Risk factors and comorbidities | |||
Hypertension; N (%) | 161 (81) | 154 (77) | 0.39 |
Diabetes mellitus; N (%) | 64 (32) | 67 (34) | 0.75 |
Dyslipidemia; N (%) | 132 (66) | 125 (63) | 0.46 |
Smoking; N (%) | 93 (47) | 89 (45) | 0.69 |
Obesity (BMI > 30); N (%) | 94 (47) | 81 (41) | 0.19 |
COPD; N (%) | 38 (19) | 40 (20) | 0.80 |
Peripheral artery disease; N (%) | 21 (11) | 16 (8) | 0.39 |
Previous MI; N (%) | 38 (19) | 45 (23) | 0.39 |
Previous stroke; N (%) | 18 (9) | 8 (4) | 0.07 |
Previous CABG; N (%) | 8 (4) | 11 (6) | 0.64 |
Previous PCI; N (%) | 54 (27) | 58 (29) | 0.65 |
Atrial fibrillation; N (%) | 16 (8) | 23 (12) | 0.24 |
Indication for procedure | |||
Stable CAD; N (%) | 127 (64) | 112 (56) | 0.13 |
Unstable angina; N (%) | 31 (16) | 37 (19) | 0.43 |
NSTEMI; N (%) | 21 (11) | 25 (13) | 0.53 |
Heart failure; N (%) | 7 (4) | 15 (8) | 0.13 |
Ventricular arrhythmia; N (%) | 6 (3) | 5 (3) | 1.00 |
Planned heart valve/aorta surgery; N (%) | 8 (4) | 6 (3) | 0.79 |
Periprocedural oral medication | |||
Aspirin; N (%) | 198 (99.0) | 197 (98.5) | 1.0 |
ADP inhibitor; N (%) | 134 (67.0) | 125 (62.5) | 0.35 |
DOAC (unstopped therapy); N (%) | 0 | 1 (0.5) | 1.0 |
Laboratory data | |||
Hemoglobin, g/dL; M (IQR) | 13.9 (12.9–14.8) | 14.0 (13.1–15.0) | 0.44 |
Platelets, K/µL; M (IQR) | 230 (190–284) | 226 (184–271) | 0.21 |
eGFR, mL/min; M (IQR) | 83 (68–100) | 85 (68–107) | 0.48 |
Echocardiography & Ultrasonography | |||
LVEF, %; M (IQR) | 56 (50–60) | 56 (45–60) | 0.30 |
Forearm radial artery lumen diameter, mm; M (IQR) | 2.50 (2.2–2.7) | 2.45 (2.2–2.7) | 0.61 |
Distal radial artery lumen diameter, mm; M (IQR) | 2.20 (2.0–2.4) | 2.20 (1.9–2.4) | 0.66 |
Snuffbox Group n = 200 | Conventional Group n = 200 | p-Value | |
---|---|---|---|
Prior ipsilateral TRA; N (%) | 41 (20.5) | 49 (24.5) | 0.34 |
Left-sided TRA; N (%) | 82 (41) | 78 (39) | 0.68 |
Successful artery puncture; N (%) | 199 (99.5) | 198 (99.0) | 1.0 |
No. of RA puncture before wiring; N (%) | |||
1 | 161 (80.5) | 170 (85.0) | 0.18 |
2 | 30 (15) | 24 (12) | |
≥3 | 8 (4) | 4 (2) | |
Successful sheath insertion; N (%) | 180 (90.0) | 197 (98.5) | <0.001 |
Access performance time, sec; M (IQR) | 140 (85–322) | 80 (58–127) | <0.001 |
Discomfort at the time of vascular access; N (%) | |||
0—no discomfort | 176 (88) | 194 (97) | 0.02 |
1—mild discomfort | 13 (6.5) | 3 (1.5) | |
2—moderate discomfort | 11 (5.5) | 3 (1.5) | |
3—severe discomfort | 0 | 0 | |
Access-site crossover; N (%) | 20 (10.0) | 7 (3.5) | <0.05 |
Ipsilateral cTRA | 15 (7.5) | - | <0.05 |
Contralateral cTRA | 3 (1.5) | 5 (2.5) | |
Femoral | 2 (1) | 2 (1) | |
Cause of access crossover; N (%) | |||
Failed artery puncture | 1 (0.5) | 2 (1.0) | 1.0 |
Radial spasm and/or dissection | 19 (9.5) | 3 (1.5) | 0.001 |
Anomalous origin of the RA | 0 | 2 (1) | 0.48 |
Arterial sheath size; N (%) | |||
5-Fr | 117 (59) | 72 (36) | <0.0001 |
Including 6-Fr GS | 10 (5) | 0 | |
6-F | 83 (42) | 128 (64) | |
Including 7-Fr GS | 1 (0.5) | 0 | |
Procedure; N (%) | |||
CAG only | 134 (67) | 123 (61.5) | 0.25 |
PCI only | 24 (12) | 30 (15) | 0.38 |
CAG and PCI | 42 (21) | 47 (23.5) | 0.55 |
Guiding catheter size; N (%) | |||
5-Fr | 22 (11) | 12 (6) | <0.01 |
6-Fr | 43 (21.5) | 65 (32.5) | |
7-Fr | 1 (0.5) | 0 | |
Extent of CAD; N (%) | |||
No changes | 48 (24.0) | 47 (23.5) | 0.27 |
Nonobstructive CAD | 38 (19.0) | 17 (8.5) | |
1-VD | 32 (16.0) | 43 (21.5) | |
2-VD | 37 (19) | 40 (20) | |
3-VD or LMD± any vessel | 45 (23) | 53 (27) | |
Coronary artery treated; N (%) | |||
Left anterior descending artery | 33 (16.5) | 31 (15.5) | 0.30 |
Left circumflex artery | 13 (6.5) | 18 (9.0) | |
Right coronary artery | 20 (10) | 26 (13) | |
Left main coronary artery | 0 | 2 (1) | |
Angioplasty type; N (%) | |||
Drug-eluting stent | 58 (29.0) | 65 (32.5) | 0.46 |
DEB/POBA | 5 (2.5) | 10 (5.0) | |
Unsuccessful PCI | 3 (1.5) | 2 (1.0) | 0.86 |
Stents implanted per PCI; M (IQR) | 1.03 (0–2) | 0.88 (0–2) | 0.52 |
Unfractionated heparin; N (%) | |||
2500 IU | 131 (66) | 120 (60) | 0.26 |
≥5000 IU | 67 (34) | 78 (39) | 0.25 |
Fluoroscopy time, min; N (%); M (IQR) | 3.6 (2.0–7.9) | 4.0 (2.0–7.3) | 0.94 |
Fluoroscopy effective dose, mGy; M (IQR) | 203 (111–438) | 196 (99–416) | 0.64 |
Contrast volume, mL; M (IQR) | 40 (25–87) | 47 (30–97) | 0.18 |
Total procedure time, min; M (IQR) | 18.9 (11.0–34.1) | 16.5 (9.7–31.5) | 0.09 |
Snuffbox Group n = 200 | Conventional Group n = 200 | p-Value | |
---|---|---|---|
Radial artery spasm | 38 (19.0) | 9 (4.5) | <0.0001 |
Hematoma * | |||
No hematoma | 160 (80) | 151 (76) | 0.11 |
Grade I | 33 (16.5) | 31 (15.5) | |
Grade II | 7 (3.5) | 16 (8.0) | |
Grade III | 0 | 2 (1) | |
Grade IV | 0 | 0 | |
Grade V | 0 | 0 | |
Active external bleeding from puncture site | 0 | 0 | 1.0 |
Hand ischemia | 0 | 0 | 1.0 |
Radial artery perforation | 1 (0.5) | 1 (0.5) | 1.0 |
Radial artery stenosis ** | 0 | 0 | 1.0 |
Pseudoaneurysm | 0 | 1 (0.5) | 1.0 |
Arteriovenous fistula | 4 (2) | 0 | 0.13 |
RAO at puncture site | 11 (5.5) | 9 (4.5) | 0.82 |
RAO at second site | 5 (2.5) | 9 (4.5) | 0.41 |
Forearm RAO | 5 (2.5) | 9 (4.5) | 0.41 |
Prolonged radial compression | 0 | 1 (0.5) | 1.0 |
Local neuropathy (thumb numbness) | 58 (29) | 29 (14.5) | <0.001 |
BARC bleeding type 2, 3, 5 | 0 | 1 (0.5%) | 1.0 |
Snuffbox Group n = 199 | Conventional Group n = 197 | p-Value | |
---|---|---|---|
Radial artery stenosis | 1 (0.5) | 1 (0.5) | 0.48 |
RAO at puncture site | 5 (2.5) | 6 (3.0) | 0.98 |
RAO at second site | 5 (2.5) | 5 (2.5) | 0.76 |
Forearm RAO | 5 (2.5) | 6 (3.0) | 0.98 |
Local neuropathy | 0 | 1 (0.5) | 0.99 |
Puncture-site infection | 0 | 0 | 1.0 |
Bone base inflammation/necrosis * | 0 | 0 | 1.0 |
Hand ischemia | 0 | 0 | 1.0 |
BARC bleeding type 2, 3, 5 | 1 (0.5) | 1 (0.5) | 1.0 |
MACE | 2 (1) | 4 (2) | 0.68 |
Myocardial infarction | 0 | 0 | 1.0 |
Stroke | 0 | 0 | 1.0 |
Urgent revascularization | 1 (0.5) | 1 (0.5) | 1.0 |
Death (any cause) | 1 out of 200 (0.5) | 3 out of 200 (1.5) | 0.62 |
Odds Ratio | 95% CI | p-Value | |
---|---|---|---|
Univariate Analysis | |||
Randomization to dTRA | 2.31 | 1.38–3.86 | 0.001 |
Forearm RA pulse volume | 0.37 | 0.23–0.59 | <0.001 |
Snuffbox RA pulse volume | 0.44 | 0.26–0.74 | 0.002 |
Gender | 0.49 | 0.30–0.80 | 0.005 |
Height | 0.006 | 0.0004–0.094 | <0.001 |
Weight | 0.97 | 0.96–0.99 | 0.003 |
BSA | 0.11 | 0.03–0.36 | <0.001 |
Dyslipidemia | 0.61 | 0.37–1.01 | 0.055 |
No. of RA punctures | 0.55 | 0.28–1.06 | 0.076 |
2nd ipsilateral TRA | 0.33 | 0.13–0.87 | 0.025 |
Hypertension | 0.65 | 0.37–1.13 | 0.128 |
Previous myocardial infarction | 0.62 | 0.32–1.21 | 0.159 |
Diabetes | 0.68 | 0.39–1.17 | 0.163 |
Multivariate analysis | |||
Randomization to dTRA | 2.89 | 1.65–5.08 | <0.001 |
Forearm RA pulse volume (higher) | 0.42 | 0.23–0.76 | 0.004 |
BMI | 1.08 | 1.00–1.17 | 0.04 |
BSA | 0.044 | 0.004–0.467 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koziński, Ł.; Orzałkiewicz, Z.; Dąbrowska-Kugacka, A. Feasibility and Safety of the Routine Distal Transradial Approach in the Anatomical Snuffbox for Coronary Procedures: The ANTARES Randomized Trial. J. Clin. Med. 2023, 12, 7608. https://doi.org/10.3390/jcm12247608
Koziński Ł, Orzałkiewicz Z, Dąbrowska-Kugacka A. Feasibility and Safety of the Routine Distal Transradial Approach in the Anatomical Snuffbox for Coronary Procedures: The ANTARES Randomized Trial. Journal of Clinical Medicine. 2023; 12(24):7608. https://doi.org/10.3390/jcm12247608
Chicago/Turabian StyleKoziński, Łukasz, Zbigniew Orzałkiewicz, and Alicja Dąbrowska-Kugacka. 2023. "Feasibility and Safety of the Routine Distal Transradial Approach in the Anatomical Snuffbox for Coronary Procedures: The ANTARES Randomized Trial" Journal of Clinical Medicine 12, no. 24: 7608. https://doi.org/10.3390/jcm12247608