Metric Learning with Dynamically Generated Pairwise Constraints for Ear Recognition
<p>Diagram of the dynamic pairwise constraints. It shows the convergence of similar pairs (squares) and divergence of dissimilar pairs (circles) by updating pairwise constraints.</p> "> Figure 2
<p>The sketch of the proposed ear recognition method.</p> "> Figure 3
<p>Original ear images for one subject from AWE (first row), WPUT (second row), USTB II (third row), and AMI (fourth row).</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. 2D Ear Recognition
2.2. Metric Learning
3. Proposed Method
3.1. Problem Formulation
3.2. Training Algorithm
3.2.1. Construction of the Pairwise Constraints
3.2.2. Optimization of the Distance Metric
3.2.3. The proposed metric learning algorithm
Algorithm 1. The training algorithm of the proposed method. |
Input: Training set , cycle number Output: Learned distance metric . Step 1. Initialize the prior distance metric as the identity matrix. Step 2. For 2.1. 2.2. Compute the distances of every two training samples with the distance metric . Step 3. For each training sample : 3.1. Find the nearest similar and dissimilar neighbors of as and . 3.2. 3.3. End for (Step 3) Step 4. 4.1. Repeat 4.2. Pick a pair in 4.3. . 4.4. . 4.5. 4.6. 4.7. 4.8. 4.9. Until convergence Step 5. 5.1. End for Step 6. Return |
4. Datasets and Experimental Results
4.1. Datasets
4.2. Experiment Settings
4.3. Comparison of Accuracy with Existing Ear Recognition Systems
4.4. Comparison of Metric Learning Methods on Accuracy and Training Time
4.5. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ibrahim, M.I.; Nixon, M.S.; Mahmoodi, S. The effect of time on ear biometrics. In Proceedings of the International Joint Conference on Biometrics (IJCB), Washington, DC, USA, 11–13 October 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Chang, K.; Bowyer, K.W.; Sarkar, S.; Victor, B. Comparison and combination of ear and face images in appearance-based biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1160–1165. [Google Scholar] [CrossRef] [Green Version]
- Burge, M.; Burger, W. Using ear biometrics for passive identification. In Proceedings of the IFIP TC11 14th International Conference on Information Security, Vienna, Austria, Budapest, Hungary, 31 August–2 September 1998; pp. 139–148. [Google Scholar]
- Abaza, A.; Ross, A. Towards understanding the symmetry of human ears: A biometric perspective. In Proceedings of the 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), Washington, DC, USA, 27–29 September 2010; pp. 1–7. [Google Scholar]
- Omara, I.; Wu, X.; Zhang, H.; Du, Y.; Zuo, W. Learning pairwise SVM on hierarchical deep features for ear recognition. IET Biom. 2018. [Google Scholar] [CrossRef]
- Emeršič, Ž.; Štepec, D.; Štruc, V.; Peer, P. Training convolutional neural networks with limited training data for ear recognition in the wild. arXiv, 2017; arXiv:1711.09952. [Google Scholar]
- Dodge, S.; Mounsef, J.; Karam, L. Unconstrained ear recognition using deep neural networks. IET Biom. 2018, 7, 207–214. [Google Scholar] [CrossRef]
- Bellet, A.; Habrard, A.; Sebban, M. A survey on metric learning for feature vectors and structured data. ArXiv, 2013; arXiv:1306.6709. [Google Scholar]
- Davis, J.V.; Kulis, B.; Jain, P.; Sra, S.; Dhillon, I.S. Information-theoretic metric learning. In Proceedings of the 24th international conference on Machine learning, Corvallis, OR, USA, 20–24 June 2007; pp. 209–216. [Google Scholar]
- Wang, F.; Zuo, W.; Zhang, L.; Meng, D.; Zhang, D. A kernel classification framework for metric learning. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1950–1962. [Google Scholar] [CrossRef] [PubMed]
- Mu, Z.; Yuan, L.; Xu, Z.; Xi, D.; Qi, S. Shape and structural feature based ear recognition. In Advances in Biometric Person Authentication; Springer: Berlin/Heidelberg, Germany, 2004; pp. 663–670. [Google Scholar]
- Shailaja, D.; Gupta, P. A simple geometric approach for ear recognition. In Proceedings of the Information Technology, International Conference on (2006), Bhubaneswar, India, 18–27 December 2006; pp. 164–167. [Google Scholar]
- Annapurani, K.; Sadiq, M.A.K.; Malathy, C. Fusion of shape of the ear and tragus—A unique feature extraction method for ear authentication system. Expert Syst. Appl. 2015, 42, 649–656. [Google Scholar] [CrossRef]
- Lakshmanan, L. Efficient person authentication based on multi-level fusion of ear scores. IET Biom. 2013, 2, 97–106. [Google Scholar] [CrossRef]
- Omara, I.; Li, F.; Zhang, H.; Zuo, W. A novel geometric feature extraction method for ear recognition. Expert Syst. Appl. 2016, 65, 127–135. [Google Scholar] [CrossRef]
- Rahman, M.; Sadi, M.S.; Islam, M.R. Human ear recognition using geometric features. In Proceedings of the 2013 International Conference on Electrical Information and Communication Technology (EICT 2013), KUET, Khulna, Bangladesh, 19–21 December 2013; pp. 1–4. [Google Scholar]
- Zhang, H.J.; Mu, Z.C.; Qu, W.; Liu, L.M.; Zhang, C.Y. A novel approach for ear recognition based on ICA and RBF network. In Proceedings of the 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August 2005; pp. 4511–4515. [Google Scholar]
- Yuan, L.; Mu, Z.C. Ear recognition based on 2D images. In Proceedings of the 2007 First IEEE International Conference on Biometrics: Theory, Applications and Systems, Crystal City, Virginia, 27–29 September 2007; pp. 1–5. [Google Scholar]
- Nanni, L.; Lumini, A. Fusion of color spaces for ear authentication. Pattern Recogn. 2009, 42, 1906–1913. [Google Scholar] [CrossRef]
- Kumar, A.; Wu, C. Automated human identification using ear imaging. Pattern Recogn. 2012, 45, 956–968. [Google Scholar] [CrossRef]
- Boodoo-Jahangeer, N.B.; Baichoo, S. LBP-based ear recognition. In Proceedings of the 2007 First IEEE International Conference on Biometrics: Theory, Applications and Systems, Crystal City, Virginia, 27–29 September 2007; pp. 1–4. [Google Scholar]
- Damer, N.; Führer, B. Ear recognition using multi-scale histogram of oriented gradients. In Proceedings of the Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), Piraeus-Athens, Greece, 18–20 July 2012; pp. 21–24. [Google Scholar]
- Zhou, J.; Cadavid, S.; Abdel-Mottaleb, M. Exploiting color sift features for 2d ear recognition. In Proceedings of the 2011 18th IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011; pp. 553–556. [Google Scholar]
- Prakash, S.; Gupta, P. An efficient ear recognition technique invariant to illumination and pose. Telecommun. Syst. 2013, 52, 1435–1448. [Google Scholar] [CrossRef]
- Nanni, L.; Lumini, A. A multi-matcher for ear authentication. Pattern Recogn. Lett. 2007, 28, 2219–2226. [Google Scholar] [CrossRef]
- Yuan, L.; chun Mu, Z. Ear recognition based on local information fusion. Pattern Recogn. Lett. 2012, 33, 182–190. [Google Scholar] [CrossRef]
- Galdámez, P.L.; Raveane, W.; Arrieta, A.G. A brief review of the ear recognition process using deep neural networks. J. Appl. Log. 2016, 24, 62–70. [Google Scholar] [CrossRef]
- Omara, I.; Wu, X.; Zhang, H.; Du, Y.; Zuo, W. Learning pairwise SVM on deep features for ear recognition. In Proceedings of the 16th IEEE/ACIS International Conference on Computer and Information Science, Wuhan, China, 24–26 May 2017; pp. 341–346. [Google Scholar]
- Ghoualmi, L.; Draa, A.; Chikhi, S. An ear biometric system based on artificial bees and the scale invariant feature transform. Expert Syst. Appl. 2016, 57, 49–61. [Google Scholar] [CrossRef]
- Chan, T.S.; Kumar, A. Reliable ear identification using 2-D quadrature filters. Pattern Recogn. Lett. 2012, 33, 1870–1881. [Google Scholar] [CrossRef]
- Sanchez, D.; Melin, P. Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the ear biometric measure. Eng. Appl. Artif. Intell. 2014, 27, 41–56. [Google Scholar] [CrossRef]
- Omara, I.; Emam, M.; Hammad, M.; Zuo, W. Ear verification based on a novel local feature extraction. In Proceedings of the 2017 International Conference on Biometrics Engineering and Application, Hong Kong, China, 21–23 April 2017; pp. 28–32. [Google Scholar]
- Yaqubi, M.; Faez, K.; Motamed, S. Ear recognition using features inspired by visual cortex and support vector machine technique. In Proceedings of the International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 13–15 May 2008; pp. 533–537. [Google Scholar]
- Benzaoui, A.; Hadid, A.; Boukrouche, A. Ear biometric recognition using local texture descriptors. J. Electron. Imaging 2014, 23, 053008. [Google Scholar] [CrossRef]
- Soleimani, A.; Araabi, B.N.; Fouladi, K. Deep multitask metric learning for offline signature verification. Pattern Recogn. Lett. 2016, 80, 84–90. [Google Scholar] [CrossRef]
- Xiang, S.; Nie, F.; Zhang, C. Learning a Mahalanobis distance metric for data clustering and classification. Pattern Recogn. 2008, 41, 3600–3612. [Google Scholar] [CrossRef]
- Liong, V.E.; Lu, J.; Ge, Y. Regularized local metric learning for person re-identification. Pattern Recogn. Lett. 2015, 68, 288–296. [Google Scholar] [CrossRef]
- Guillaumin, M.; Verbeek, J.; Schmid, C. Is that you? Metric learning approaches for face identification. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision (ICCV), Kyoto, Japan, 24 September–4 October 2009; pp. 498–505. [Google Scholar]
- Ying, Y.; Li, P. Distance metric learning with eigenvalue optimization. J. Mach. Learn. Res. 2012, 13, 1–26. [Google Scholar]
- Ying, Y.; Huang, K.; Campbell, C. Sparse metric learning via smooth optimization. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC., Canada, 7–10 December 2009; pp. 2214–2222. [Google Scholar]
- Koestinger, M.; Hirzer, M.; Wohlhart, P.; Roth, P.M.; Bischof, H. Large scale metric learning from equivalence constraints. In Proceedings of the 25th IEEE Conference on Computer Vision and Pattern Recognition, Providence, Rhode Island, 16–21 June 2012; pp. 2288–2295. [Google Scholar]
- Weinberger, K.Q.; Saul, L.K. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 2009, 10, 207–244. [Google Scholar]
- Shen, C.; Kim, J.; Wang, L.; Hengel, A. Positive semidefinite metric learning with boosting. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2009; pp. 1651–1659. [Google Scholar]
- Shen, C.; Kim, J.; Wang, L.; Hengel, A.V.D. Positive semidefinite metric learning using boosting-like algorithms. J. Mach. Learn. Res. 2012, 13, 1007–1036. [Google Scholar]
- Shen, C.; Kim, J.; Wang, L. A scalable dual approach to semidefinite metric learning. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 20–25 June 2011; pp. 2601–2608. [Google Scholar]
- Emeršic, Ž.; Štruc, V.; Peer, P. Ear recognition: More than a survey. Neurocomputing 2017, 255, 26–39. [Google Scholar] [CrossRef] [Green Version]
- Haghighat, M.; Abdel-Mottaleb, M.; Alhalabi, W. Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1984–1996. [Google Scholar] [CrossRef]
- Kulis, B.; Sustik, M.A.; Dhillon, I.S. Low-rank kernel learning with Bregman matrix divergences. J. Mach. Learn. Res. 2009, 10, 341–376. [Google Scholar]
- Frejlichowski, D.; Tyszkiewicz, N. The west pomeranian university of technology ear database–a tool for testing biometric algorithms. Image Anal. Recogn. 2010, 227–234. [Google Scholar]
- Gonzalez, E.; Alvarez, L.; Mazorra, L. Mathematical Analysis of Images (AMI) Ear Database. Available online: http://www.ctim.es/research_works/ami_ear_database/ (accessed on 10 August 2017).
- Raghavendra, R.; Raja, K.B.; Busch, C. Ear recognition after ear lobe surgery: A preliminary study. In Proceedings of the IEEE International Conference on Identity, Security and Behavior Analysis, Sendai, Japan, 29 February–2 March 2016; pp. 1–6. [Google Scholar]
- Hansley, E.E.; Segundo, M.P.; Sarkar, S. Employing fusion of learned and handcrafted features for unconstrained ear recognition. IET Biom. 2018, 7, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Mei, J.; Liu, M.; Karimi, H.R.; Gao, H. Logdet divergence based metric learning using triplet labels. In Proceedings of the 30th International Conference on International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013. [Google Scholar]
Methods | AWE | USTB2 | AMI | WPUT | |
---|---|---|---|---|---|
Emersic et al. [46] | 49.6 ± 6.80 | 90.9 ± 6.50 | -- | -- | |
Raghavendra et al. [51] | -- | -- | 86.36 | -- | |
Benzaoui et al. [34] | -- | 90.9 ± 6.50 | 47.72 | -- | |
Earnest et al. [52] | 90.60 | -- | -- | EER = 9.40 | |
Samuel et al. [7] | 85.00 | -- | -- | -- | |
Ours | Mahalanobis distance | 72.22 ± 1.93 | 91.71 ± 5.11 | 95.50 ± 1.19 | 57.00 ± 1.83 |
Metric learning | 98.13 ± 0.72 | 95.85 ± 3.90 | 96.65 ± 1.36 | 93.42 ± 2.06 |
Methods | Time | K = 1 | K = 2 | K = 3 | K = 4 | K = 5 |
---|---|---|---|---|---|---|
ITML [9] | 59.68 s | 83.38 ± 5.62 | 72.23 ± 7.22 | 70.68 ± 8.35 | 69.70 ± 7.96 | 69.5 ± 8.25 |
LMNN [42] | 148.75 s | 99.25 ± 0.72 | 99.25 ± 0.72 | 99.23 ± 0.82 | 99.23 ± 0.83 | 98.88 ± 1.11 |
LDML [38] | 18.29 s | 99.10 ± 0.01 | 99.10 ± 0.01 | 99.10 ± 0.01 | 99.05 ± 0.01 | 99.10 ± 0.01 |
LDMLT [53] | 9.68 s | 98.95 ± 0.86 | 98.95 ± 86 | 99.18 ± 0.8 | 99.35 ± 0.86 | 99.35 ± 0.85 |
Ours | 2.13 s | 98.13 ± 0.72 | 98.13 ± 0.72 | 98.70 ± 0.39 | 98.75 ± 0.50 | 98.80 ± 0.61 |
Methods | Time | K = 1 | K = 2 | K = 3 | K = 4 | K = 5 |
---|---|---|---|---|---|---|
ITML [9] | 17.67 s | 93.33 ± 4.51 | 80.33 ± 3.65 | 75.37 ± 3.97 | 73.17 ± 4.28 | 69,51 ± 4.97 |
LMNN [42] | 19.70 s | 94.07 ± 3.72 | 94.07 ± 3.72 | 78.78 ± 3.22 | 78.78 ± 3.22 | 57.32 ± 8.78 |
LDML [38] | 13.25 s | 93.09 ± 3.59 | 93.09 ± 3.59 | 92.44 ± 3.49 | 91.87 ± 3.68 | 91.71 ± 3.73 |
LDMLT [53] | 15.64 s | 94.96 ± 2.7 | 94.96 ± 2.7 | 94.88 ± 2.66 | 94.88 ± 2.66 | 94.63 ± 3.05 |
Ours | 11.77 s | 95.85 ± 3.90 | 95.85 ± 3.90 | 95.77 ± 3.82 | 95.37 ± 4.08 | 95.37 ± 4.35 |
Methods | Time | K = 1 | K = 2 | K = 3 | K = 4 | K = 5 |
---|---|---|---|---|---|---|
ITML [9] | 140.12 s | 91.80 ± 2.20 | 91.80 ± 2.20 | 91.95 ± 2.21 | 91.85 ± 2.16 | 91.72 ± 2.12 |
LMNN [42] | 3346.9 s | 93.75 ± 1.96 | 93.75 ± 1.96 | 88.64 ± 2.15 | 88.64 ± 2.15 | 78.32 ± 3.19 |
LDML [38] | 95.29 s | 93.07 ± 0.02 | 93.07 ± 0.02 | 88.16 ± 0.02 | 83.89 ± 0.03 | 79.91 ± 0.05 |
LDMLT [53] | 173.36 s | 92.45 ± 2.17 | 92.45 ± 2.17 | 92.37 ± 2.18 | 92.2 ± 2.15 | 91.92 ± 2.14 |
Ours | 12.15 s | 93.42 ± 2.06 | 93.42 ± 2.07 | 93.30 ± 2.04 | 92.88 ± 2.03 | 92.36 ± 2.19 |
Methods | Time | K = 1 | K = 2 | K = 3 | K = 4 | K = 5 |
---|---|---|---|---|---|---|
ITML [9] | 54.91 s | 97.64 ± 0.66 | 96.29 ± 1.31 | 95.89 ± 1.69 | 96.04 ± 1.72 | 96.19 ± 1.76 |
LMNN [42] | 58.15 s | 99.12 ± 1.03 | 99.12 ± 1.03 | 98.07 ± 1.47 | 98.07 ± 1.47 | 95.21 ± 2.22 |
LDML [38] | 5.43 s | 98.79 ± 1.09 | 98.79 ± 1.09 | 98.32 ± 1.17 | 97.86 ± 1.31 | 97.32 ± 1.75 |
LDMLT [53] | 1.21 s | 98.04 ± 1.61 | 98.04 ± 1.61 | 98.32 ± 1.21 | 98.32 ± 1.14 | 98.39 ± 1.07 |
Ours | 0.74 s | 96.96 ± 1.36 | 96.96 ± 1.36 | 97.12 ± 1.43 | 97.61 ± 1.53 | 97.76 ± 1.38 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omara, I.; Zhang, H.; Wang, F.; Hagag, A.; Li, X.; Zuo, W. Metric Learning with Dynamically Generated Pairwise Constraints for Ear Recognition. Information 2018, 9, 215. https://doi.org/10.3390/info9090215
Omara I, Zhang H, Wang F, Hagag A, Li X, Zuo W. Metric Learning with Dynamically Generated Pairwise Constraints for Ear Recognition. Information. 2018; 9(9):215. https://doi.org/10.3390/info9090215
Chicago/Turabian StyleOmara, Ibrahim, Hongzhi Zhang, Faqiang Wang, Ahmed Hagag, Xiaoming Li, and Wangmeng Zuo. 2018. "Metric Learning with Dynamically Generated Pairwise Constraints for Ear Recognition" Information 9, no. 9: 215. https://doi.org/10.3390/info9090215