An Extended VIKOR-Based Approach for Pumped Hydro Energy Storage Plant Site Selection with Heterogeneous Information
<p>Installed capacity of various storage technologies in global electricity storage system (Unit: MW, Sources: Report issued by the International Renewable Energy Agency—“Re-Thinking Energy 2017”).</p> "> Figure 2
<p>A TIFN <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>a</mi> <mo>˜</mo> </mover> <mo>=</mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <munder accentunder="true"> <mi>a</mi> <mo>_</mo> </munder> <mo>,</mo> <mi>a</mi> <mo>,</mo> <mover accent="true"> <mi>a</mi> <mo>¯</mo> </mover> <mo stretchy="false">)</mo> <mo>;</mo> <msub> <mi>w</mi> <mover accent="true"> <mi>a</mi> <mo>˜</mo> </mover> </msub> <mo>,</mo> <msub> <mi>u</mi> <mover accent="true"> <mi>a</mi> <mo>˜</mo> </mover> </msub> <mo stretchy="false">)</mo> </mrow> </semantics> </math>.</p> "> Figure 3
<p>Distribution and general situation of the four sites.</p> "> Figure 4
<p>Ranking results of changing the four criteria weight.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Evaluation Criteria System of PHESP Site Selection
4. Preliminaries
4.1. Triangular Intuitionistic Fuzzy Number
4.1.1. Definition of Triangular Intuitionistic Fuzzy Number
4.1.2. Operation Rules of Triangular Intuitionistic Fuzzy Number
- (1)
- (2)
4.1.3. Distance between Two Triangular Intuitionistic Fuzzy Numbers
4.2. 2-Dimension Uncertain Linguistic Variable
4.2.1. Definition of 2-Dimension Uncertain Linguistic Variable
4.2.2. Operational Rules of 2-Dimension Uncertain Linguistic Variable
- (1)
- (2)
4.2.3. Distance between Two 2-Dimension Uncertain Linguistic Variables
4.3. VIKOR Method
5. An Extended, VIKOR-Based MCDM Approach with Heterogeneous Information
- :
- : is also considered optimal according to the value of or/and .
6. A Case Study
6.1. Background
6.2. Sitting Decision-Making Process
- ;
- ; ;
- ; .
6.3. Sensitivity Analysis
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Appendix A.1. Terrain
Appendix A.1.1. Permeability
Appendix A.1.2. Altitude
Appendix A.1.3. Storage Capacity
Appendix A.1.4. Proximity to Electricity Grid
Appendix A.1.5. Length-Height Ratio
Appendix A.2. Economic Effect
Appendix A.2.1. Loan Repayment Period
Appendix A.2.2. Assets Liabilities Ratio
Appendix A.2.3. Pay Back Period
Appendix A.2.4. Financial Internal Rate of Return
Appendix A.3. Social Benefits
Appendix A.3.1. Employment
Appendix A.3.2. Economy improvement
Appendix A.3.3. Withstanding disasters
Appendix A.4. Environment
Appendix A.4.1. Carbon Emission Reduction [46]
Appendix A.4.2. Nitrogen Oxide Emission
Appendix A.4.3. Sulfur Dioxide Emission
Appendix B
Criteria | PIS | NIS | A1 | A2 | A3 | A4 | ||||
d1j+ | d1j− | d1j+ | d1j− | d1j+ | d1j− | d1j+ | d1j− | |||
C11 | A1 | A2 | 0 | 1 | 1 | 0 | 0.289 | 0.712 | 0.877 | 0.123 |
C12 | A1 | A4 | 0 | 1 | 0.360 | 0.640 | 0.355 | 0.645 | 1 | 0 |
C13 | A1 | A2 | 0 | 1 | 0.702 | 0.298 | 0.931 | 0.069 | 1 | 0 |
C14 | A2 | A3 | 0.157 | 0.843 | 0 | 1 | 1 | 0 | 0.199 | 0.801 |
C15 | A1 | A4 | 0.000 | 1.000 | 0.576 | 0.424 | 0.367 | 0.633 | 1 | 0 |
C21 | A1 | A4 | 0 | 0.475 | 0.300 | 0.175 | 0.350 | 0.125 | 0.475 | 0 |
C22 | A1 | A2 | 0 | 0.200 | 0.200 | 0 | 0.050 | 0.150 | 0.100 | 0.100 |
C23 | A4 | A3 | 0.225 | 0.250 | 0.400 | 0.075 | 0.475 | 0 | 0 | 0.475 |
C31 | A3 | A1 | 0.850 | 0.000 | 0.575 | 0.275 | 0 | 0.850 | 0.010 | 0.841 |
C32 | A3 | A2 | 0.429 | 0.535 | 0.964 | 0 | 0 | 0.964 | 0.302 | 0.662 |
C33 | A3 | A1 | 1.059 | 0.000 | 0.714 | 0.345 | 0 | 1.059 | 0.309 | 0.749 |
C34 | A2 | A3 | 0.518 | 0.406 | 0 | 0.924 | 0.924 | 0 | 0.510 | 0.414 |
C41 | A1 | A4 | 0 | 0.987 | 0.606 | 0.380 | 0.966 | 0.021 | 0.987 | 0 |
C42 | A1 | A4 | 0 | 1.116 | 0.764 | 0.351 | 1.026 | 0.090 | 1.116 | 0 |
C43 | A1 | A4 | 0 | 0.990 | 0.650 | 0.340 | 0.952 | 0.038 | 0.990 | 0 |
Appendix C
References
- Rogeau, A.; Girard, R.; Kariniotakis, G. A generic gis-based method for small pumped hydro energy storage (phes) potential evaluation at large scale. Appl. Energy 2017, 197, 241–253. [Google Scholar] [CrossRef]
- Akinyele, D.O.; Rayudu, R.K. Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assess. 2014, 8, 74–91. [Google Scholar] [CrossRef]
- Kong, Y.; Kong, Z.; Liu, Z.; Wei, C.; Zhang, J.; An, G. Pumped storage power stations in china: The past, the present, and the future. Renew. Sustain. Energy Rev. 2016, 71, 720–731. [Google Scholar] [CrossRef]
- Gimeno-Gutiérrez, M.; Lacal-Arántegui, R. Assessment of the european potential for pumped hydropower energy storage based on two existing reservoirs. Renew. Energy 2015, 75, 856–868. [Google Scholar] [CrossRef]
- Petrakopoulou, F.; Robinson, A.; Loizidou, M. Simulation and analysis of a stand-alone solar-wind and pumped-storage hydropower plant. Energy 2016, 96, 676–683. [Google Scholar] [CrossRef]
- Pérez-Díaz, J.I.; Jiménez, J. Contribution of a pumped-storage hydropower plant to reduce the scheduling costs of an isolated power system with high wind power penetration. Energy 2016, 109, 92–104. [Google Scholar] [CrossRef]
- Pérez-Díaz, J.I.; Chazarra, M.; García-González, J.; Cavazzini, G.; Stoppato, A. Trends and challenges in the operation of pumped-storage hydropower plants. Renew. Sustain. Energy Rev. 2015, 44, 767–784. [Google Scholar] [CrossRef]
- Yang, C.J.; Jackson, R.B. Opportunities and barriers to pumped-hydro energy storage in the united states. Renew. Sustain. Energy Rev. 2011, 15, 839–844. [Google Scholar] [CrossRef]
- Lu, X.; Wang, S. A gis-based assessment of tibet’s potential for pumped hydropower energy storage ☆. Renew. Sustain. Energy Rev. 2016, 69, 1045–1054. [Google Scholar] [CrossRef]
- Kucukali, S. Finding the most suitable existing hydropower reservoirs for the development of pumped-storage schemes: An integrated approach. Renew. Sustain. Energy Rev. 2014, 37, 502–508. [Google Scholar] [CrossRef]
- Connolly, D.; Maclaughlin, S.; Leahy, M. Development of a computer program to locate potential sites for pumped hydroelectric energy storage. Energy 2010, 35, 375–381. [Google Scholar] [CrossRef]
- Vasileiou, M.; Loukogeorgaki, E.; Vagiona, D.G. Gis-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in greece. Renew. Sustain. Energy Rev. 2017, 73, 745–757. [Google Scholar] [CrossRef]
- Düğenci, M. A new distance measure for interval valued intuitionistic fuzzy sets and its application to group decision making problems with incomplete weights information. Appl. Soft Comput. 2016, 41, 120–134. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, K.; Zeng, B.; Yang, M.; Geng, S. Cloud-based decision framework for waste-to-energy plant site selection—A case study from china. Waste Manag. 2016, 48, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Geng, S.; Zhang, H.; Gao, M. Decision framework of solar thermal power plant site selection based on linguistic choquet operator. Appl. Energy 2014, 136, 303–311. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.M.; García-Cascales, M.S.; Lamata, M.T. Gis-based onshore wind farm site selection using fuzzy multi-criteria decision making methods. Evaluating the case of southeastern spain. Appl. Energy 2016, 171, 86–102. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Yuan, J.; Geng, S.; Zhang, H. Study of decision framework of offshore wind power station site selection based on electre-iii under intuitionistic fuzzy environment: A case of china. Energy Convers. Manag. 2016, 113, 66–81. [Google Scholar] [CrossRef]
- Wu, Y.; Geng, S.; Xu, H.; Zhang, H. Study of decision framework of wind farm project plan selection under intuitionistic fuzzy set and fuzzy measure environment. Energy Convers. Manag. 2014, 87, 274–284. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, K.; Zeng, B.; Yang, M.; Li, L.; Zhang, H. A cloud decision framework in pure 2-tuple linguistic setting and its application for low-speed wind farm site selection. J. Clean. Prod. 2017, 142, 2154–2165. [Google Scholar] [CrossRef]
- Zhu, W.D.; Zhou, G.Z.; Yang, S.L. An approach to group decision making based on 2-dimension linguistic assessment information. Syst. Eng. 2009, 27, 113–118. [Google Scholar]
- Xu, Z. Uncertain Linguistic Aggregation Operators Based Approach to Multiple Attribute Group Decision Making under Uncertain Linguistic Environment. Inf. Sci. 2004, 168, 171–184. [Google Scholar] [CrossRef]
- Liu, P. An approach to group decision making based on 2-dimension uncertain linguistic information. Technol. Econ. Dev. Economy 2012, 18, 424–437. [Google Scholar] [CrossRef]
- Liu, P.; Yu, X. 2-Dimension Uncertain Linguistic Power Generalized Weighted Aggregation Operator and Its Application in Multiple Attribute Group Decision Making. Knowl.-Based Syst. 2014, 57, 69–80. [Google Scholar] [CrossRef]
- Liu, P.; He, L.; Yu, X. Generalized hybrid aggregation operators based on the 2-dimension uncertain linguistic information for multiple attribute group decision making. Group Decis. Negot. 2016, 25, 103–126. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y. The aggregation operators based on the 2-dimension uncertain linguistic information and their application to decision making. Int. J. Mach. Learn. Cybern. 2016, 7, 1057–1074. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, C.; Xu, H. Optimal site selection of tidal power plants using a novel method: A case in china. Energies 2016, 9, 832. [Google Scholar] [CrossRef]
- Matsui, O.; Kobayashi, G.S. Deriving preference order of open pit mines equipment through madm methods: Application of modified vikor method. Expert Syst. Appl. 2011, 38, 2550–2556. [Google Scholar]
- Sun, P.; Liu, Y.; Qiu, X.; Wang, L. Hybrid multiple attribute group decision-making for power system restoration. Expert Syst. Appl. 2015, 42, 6795–6805. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981; pp. 287–288. [Google Scholar]
- Opricovic, S.; Tzeng, G.H. Extended vikor method in comparison with outranking methods. Eur. J. Oper. Res. 2007, 178, 514–529. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.H. Compromise solution by mcdm methods: A comparative analysis of vikor and topsis. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Jolai, F.; Tavakkoli-Moghaddam, R. A fuzzy stochastic multi-attribute group decision-making approach for selection problems. Group Decis. Negot. 2013, 22, 207–233. [Google Scholar] [CrossRef]
- Liu, H.C.; You, J.X.; You, X.Y.; Shan, M.M. A novel approach for failure mode and effects analysis using combination weighting and fuzzy vikor method. Appl. Soft Comput. J. 2015, 28, 579–588. [Google Scholar] [CrossRef]
- Mokhtarian, M.N.; Sadi-Nezhad, S.; Makui, A. A new flexible and reliable interval valued fuzzy vikor method based on uncertainty risk reduction in decision making process: An application for determining a suitable location for digging some pits for municipal wet waste landfill. Comput. Ind. Eng. 2014, 78, 213–233. [Google Scholar] [CrossRef]
- You, X.Y.; You, J.X.; Liu, H.C.; Zhen, L. Group multi-criteria supplier selection using an extended vikor method with interval 2-tuple linguistic information. Expert Syst. Appl. 2015, 42, 1906–1916. [Google Scholar] [CrossRef]
- Li, D.F. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to madm problems. Comput. Math. Appl. 2010, 60, 1557–1570. [Google Scholar] [CrossRef]
- Wan, S.P.; Wang, F.; Lin, L.L.; Dong, J.Y. Some new generalized aggregation operators for triangular intuitionistic fuzzy numbers and application to multi-attribute group decision making. Comput. Ind. Eng. 2016, 93, 286–301. [Google Scholar] [CrossRef]
- Liu, P. The research note of 2-dimension uncertain linguistic variables. Shandong Univ. Financ. Econ. 2012, 9, 20. [Google Scholar]
- Opricovic, S. Multicriteria Optimization of Civil Engineering Systems. Ph.D. Thesis, Faculty of Civil Engineering, Belgrade, Serbia, 1998. [Google Scholar]
- Kumar, M.; Samuel, C. Selection of best renewable energy source by using VIKOR method. Technol. Econ. Smart Grids Sustain. Energy 2017, 2. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, H.; Sutherland, J.W. Development of multi-criteria decision making model for remanufacturing technology portfolio selection. J. Clean. Prod. 2011, 19, 1939–1945. [Google Scholar] [CrossRef]
- Capilla, J.A.J.; Carrión, J.A.; Alameda-Hernandez, E. Optimal site selection for upper reservoirs in pump-back systems, using geographical information systems and multicriteria analysis. Renew. Energy 2016, 86, 429–440. [Google Scholar] [CrossRef]
- Zhao, H.; Feng, Y.; Zhang, X.; Zhen, R. Hydro-thermal unit commitment considering pumped storage stations. In Proceedings of the International Conference on Power System Technology, Beijing, China, 18–21 August 1998; pp. 576–580. [Google Scholar]
- Connolly, D.; Lund, H.; Finn, P.; Mathiesen, B.V.; Leahy, M. Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage. Energy Policy 2011, 39, 4189–4196. [Google Scholar] [CrossRef]
- Deane, J.P.; Gallachóir, B.P.Ó.; Mckeogh, E.J. Techno-economic review of existing and new pumped hydro energy storage plant. Renew. Sustain. Energy Rev. 2010, 14, 1293–1302. [Google Scholar] [CrossRef]
- Zhang, N.; Lu, X.; Mcelroy, M.B.; Nielsen, C.P.; Chen, X.; Deng, Y.; Kang, C. Reducing curtailment of wind electricity in china by employing electric boilers for heat and pumped hydro for energy storage. Appl. Energy 2016, 184, 987–994. [Google Scholar] [CrossRef]
Criteria | Symbol | Sub-Criteria | Symbol |
---|---|---|---|
Terrain and geography | C1 | Permeability | C11 |
Altitude | C12 | ||
Storage capacity | C13 | ||
Proximity to electricity grid | C14 | ||
Length-height ratio | C15 | ||
Social effect | C2 | Employment | C21 |
Economy improvement | C22 | ||
Disasters withstand | C23 | ||
Economic effect | C3 | Loan repayment period | C31 |
Assets liabilities ratio | C32 | ||
Pay back period | C33 | ||
Financial internal rate of return | C34 | ||
Environmental effect | C4 | Carbon emission reduction | C41 |
Nitrogen oxide emission reduction | C42 | ||
Sulfur dioxide emission reduction | C43 |
Alternative | C11 (m/h) | C12 (m) | C13 (m2) | C14 (m) | C15 |
---|---|---|---|---|---|
A1 | 339.45 | 567 | 99,152 | 4258 | 2.49 |
A2 | 570.46 | 485 | 34,493 | 3692 | 5.42 |
A3 | 405.94 | 486 | 13,457 | 7307 | 4.36 |
A4 | 542.16 | 339 | 7102 | 4412 | 7.59 |
Alternative | C31 (a) | C32 | C33 (a) | C34 | C41 (10 × 4CNY) | C42 (10 × 4CNY) | C43 (10 × 4CNY) | |
---|---|---|---|---|---|---|---|---|
A1 | Value | ≈8.5 | ≈75.35 | ≈13.6 | ≈17.56 | ≈2530 | ≈4208 | ≈406 |
TIFN | ((8.3, 8.5, 8.7); 0.7, 0.1) | ((75.21, 75.35, 75.46); 0.7, 0.1) | ((13.5, 13.6, 13.8); 0.7, 0.2) | ((17.4, 17.56, 17.7); 0.6, 0.3) | ((2518, 2530, 2543); 0.7, 0.2) | ((4187, 4208, 4223); 0.8, 0.1) | ((389, 406, 419); 0.8, 0.2) | |
A2 | Value | ≈9.8 | ≈70.35 | ≈15.7 | ≈19.62 | ≈1246 | ≈2106 | ≈210 |
TIFN | ((9.5, 9.8, 9.8); 0.8, 0.1) | ((70.12, 70.35, 70.43); 0.8, 0.2) | ((15.5, 15.7, 15.8); 0.6, 0.3) | ((19.5, 19.62, 19.7); 0.7, 0.2) | ((1230, 1246, 1261); 0.8, 0.1) | ((2092, 2106, 2122); 0.7, 0.1) | ((198, 210, 223); 0.7, 0.2) | |
A3 | Value | ≈13.2 | ≈80 | ≈18.4 | ≈15.33 | ≈623 | ≈1362 | ≈108 |
TIFN | ((12.9, 13.2, 13.4); 0.6, 0.2) | ((79.83, 80, 80.15); 0.7, 0.2) | ((18.1, 18.4, 18.6); 0.8, 0.1) | ((15.1, 15.33, 15.5); 0.9, 0.1) | ((609, 623, 642); 0.7, 0.1) | ((1254, 1362, 1378); 0.7, 0.2) | ((98, 108, 121); 0.8, 0.2) | |
A4 | Value | ≈12.8 | ≈78 | ≈17.2 | ≈16.97 | ≈589 | ≈1052 | ≈96 |
TIFN | ((12.6, 12.8, 13); 0.7, 0.2) | ((77.9, 78, 78.17); 0.6, 0.3) | ((17.1, 17.2, 17.3); 0.8, 0.2) | ((16.9, 16.97, 17.2); 0.8, 0.1) | ((573, 589, 603); 0.6, 0.3) | ((1013, 1052, 1070); 0.8, 0.1) | ((87, 96, 106); 0.8, 0.1) |
Alternative | C21 | C22 | C23 |
---|---|---|---|
A1 | (S2, S3), (S1, S2) | (S2, S3), (S1, S2) | (S1, S3), (S1, S2) |
A2 | (S1, S2), (S1, S2) | (S1, S2), (S0, S1) | (S2, S3), (S0, S1) |
A3 | (S3, S4), (S0, S1) | (S1, S2), (S1, S2) | (S0, S1), (S1, S2) |
A4 | (S1, S2), (S0, S1) | (S3, S4), (S0, S1) | (S3, S4), (S1, S2) |
Criteria | PIS | NIS | A1 | A2 | A3 | A4 | ||||
---|---|---|---|---|---|---|---|---|---|---|
d1j+ | d1j− | d1j+ | d1j− | d1j+ | d1j− | d1j+ | d1j− | |||
C11 | A1 | A2 | 0 | 1 | 1 | 0 | 0.289 | 0.712 | 0.877 | 0.123 |
C12 | A1 | A4 | 0 | 1 | 0.360 | 0.640 | 0.355 | 0.645 | 1 | 0 |
C13 | A1 | A2 | 0 | 1 | 0.702 | 0.298 | 0.931 | 0.069 | 1 | 0 |
C14 | A2 | A3 | 0.157 | 0.843 | 0 | 1 | 1 | 0 | 0.199 | 0.801 |
C15 | A1 | A4 | 0.000 | 1.000 | 0.576 | 0.424 | 0.367 | 0.633 | 1 | 0 |
C21 | A1 | A4 | 0 | 0.475 | 0.300 | 0.175 | 0.350 | 0.125 | 0.475 | 0 |
C22 | A1 | A2 | 0 | 0.200 | 0.200 | 0 | 0.050 | 0.150 | 0.100 | 0.100 |
C23 | A4 | A3 | 0.225 | 0.250 | 0.400 | 0.075 | 0.475 | 0 | 0 | 0.475 |
C31 | A3 | A1 | 0.850 | 0.000 | 0.575 | 0.275 | 0 | 0.850 | 0.010 | 0.841 |
C32 | A3 | A2 | 0.429 | 0.535 | 0.964 | 0 | 0 | 0.964 | 0.302 | 0.662 |
C33 | A3 | A1 | 1.059 | 0.000 | 0.714 | 0.345 | 0 | 1.059 | 0.309 | 0.749 |
C34 | A2 | A3 | 0.518 | 0.406 | 0 | 0.924 | 0.924 | 0 | 0.510 | 0.414 |
C41 | A1 | A4 | 0 | 0.987 | 0.606 | 0.380 | 0.966 | 0.021 | 0.987 | 0 |
C42 | A1 | A4 | 0 | 1.116 | 0.764 | 0.351 | 1.026 | 0.090 | 1.116 | 0 |
C43 | A1 | A4 | 0 | 0.990 | 0.650 | 0.340 | 0.952 | 0.038 | 0.990 | 0 |
Alternative | Value | Alternative | Value | Alternative | Value | |||
---|---|---|---|---|---|---|---|---|
A1 | 0.127 | A1 | 0.059 | A1 | 0 | |||
A2 | 0.668 | A2 | 0.207 | A2 | 0.883 | |||
A3 | 0.629 | A3 | 0.194 | A3 | 0.810 | |||
A4 | 0.813 | A4 | 0.211 | A4 | 1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Liu, L.; Gao, J.; Chu, H.; Xu, C. An Extended VIKOR-Based Approach for Pumped Hydro Energy Storage Plant Site Selection with Heterogeneous Information. Information 2017, 8, 106. https://doi.org/10.3390/info8030106
Wu Y, Liu L, Gao J, Chu H, Xu C. An Extended VIKOR-Based Approach for Pumped Hydro Energy Storage Plant Site Selection with Heterogeneous Information. Information. 2017; 8(3):106. https://doi.org/10.3390/info8030106
Chicago/Turabian StyleWu, Yunna, Lingyun Liu, Jianwei Gao, Han Chu, and Chuanbo Xu. 2017. "An Extended VIKOR-Based Approach for Pumped Hydro Energy Storage Plant Site Selection with Heterogeneous Information" Information 8, no. 3: 106. https://doi.org/10.3390/info8030106