The Diffraction Research of Cylindrical Block Effect Based on Indoor 45 GHz Millimeter Wave Measurements
<p>Experimental scene.</p> "> Figure 2
<p>Cylinder and human body block models: (<b>a</b>) A cylinder moved along the TX-RX line; (<b>b</b>) A man moved along the TX-RX line; (<b>c</b>) A cylinder and a moved man blocking the TX-RX connection; (<b>d</b>) A moved man and a cylinder blocking the TX-RX connection.</p> "> Figure 3
<p>Physical model of cylindrical surface diffraction.</p> "> Figure 4
<p>Geometry for multiple knife-edge diffraction.</p> "> Figure 5
<p>Measurement results and error curves under two cylinder blocks of different materials: (<b>a</b>) Measurement results and theoretical simulation curves under one cylinder block; (<b>b</b>) Error analysis of two cylinder blocks measurement results.</p> "> Figure 6
<p>Measurement results and error curves under the human body block: (<b>a</b>) Measurement results and theoretical simulation under the human body block; (<b>b</b>) Error analysis of two laboratory measurement results.</p> "> Figure 7
<p>Comparing the measurement results between the human body and the cylinders.</p> "> Figure 8
<p>Attenuation measurements of model (c) and model (d).</p> ">
Abstract
:1. Introduction
2. Experimental Environment and Measurement Model
3. Diffraction Theory
3.1. Uniform Theory of Diffraction
3.2. Vogler Multiple Knife-Edge Diffraction Theory
4. Experiment Results and Analysis
4.1. Experiment Results and Error Analysis
4.2. Coverage Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fettweis, G.; Alamouti, S. 5G: Personal Mobile Internet beyond What Cellular Did to Telephony. IEEE Commun. Mag. 2014, 52, 140–145. [Google Scholar] [CrossRef]
- Thompson, J.; Ge, X.; Wu, H.C.; Irmer, R.; Jiang, H.; Fettweis, G.; Alamouti, S. 5G Wireless Communication Systems: Prospects and Challenges. IEEE Commun. Mag. 2014, 52, 62–64. [Google Scholar] [CrossRef]
- Lu, J.; Steinbach, D.; Cabrol, P.; Pietraski, P. Modeling the Impact of Human Blockers in Millimeter Wave Radio Links. Available online: http://www.interdigital.com/research_papers/2012_01_25_modeling_the_impact_of_human_blockers_in_millimeter_wave_radio_links (accessed on 28 April 2017).
- Wang, Q.; Zhao, X.; Li, S.; Wang, M.; Sun, S.; Hong, W. Attenuation by a Human Body and Trees as well as Material Penetration Loss in 26 and 39 GHz Millimeter Wave Bands. Int. J. Antennas Propag. 2017, 2017, 2961090. [Google Scholar] [CrossRef]
- Geng, S.Y.; Li, X.; Wang, Q.; Wang, G.B.; Wang, M.J.; Sun, S.H.; Wei, H.; Zhao, X.W. Research on human blockage effect for indoor 26 GHz mm-wave communications. J. Commun. 2016, 37, 68–73. (In Chinese) [Google Scholar]
- Geng, S.Y.; Liu, S.Y.; Hong, W.; Zhao, X.W. Mm-wave 60GHz indoor channel parameters and correlation properties. Chin. J. Radio Sci. 2015, 30, 808–813. (In Chinese) [Google Scholar]
- Jacob, M.; Priebe, S.; Dickhoff, R.; Kleine-Ostmann, T.; Schrader, T.; Kurner, T. Diffraction in mm and sub-mmwave indoor propagation channels. IEEE Trans. Microw. Theory Tech. 2012, 60, 833–844. [Google Scholar] [CrossRef]
- Pathak, P.H.; Burnside, W.; Marhefka, J.R. A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface. IEEE Trans. Antennas Propag. 1980, 28, 631–642. [Google Scholar] [CrossRef]
- Pathak, P.H. An asymptotic analysis of the scattering of plane waves by a smooth convex cylinder. Radio Sci. 1979, 14, 419–435. [Google Scholar] [CrossRef]
- Idemen, M.I. Diffraction of an Obliquely Incident High-Frequency Wave by a Cylindrically Curved Sheet. IEEE Trans. Antennas Propag. 1986, 34, 181–187. [Google Scholar] [CrossRef]
- Ghaddar, M.; Talbi, L.; Denidni, T.A.; Sebak, A. A Conducting Cylinder For Modeling Human Body Presence in Indoor Propagation Channel. IEEE Trans. Antennas Propag. 2007, 55, 3099–3103. [Google Scholar] [CrossRef]
- Andersen, J.B. UTD Multiple-Edge Transition Zone Diffraction. IEEE Trans. Antennas Propog. 1997, 45, 1093–1097. [Google Scholar] [CrossRef]
- Kouyoumjian, R.G.; Pathak, P.H. A Uniform Geometrical Theory of Diffraction for an Edge in a Perfectly Conducting Surface. Proc. IEEE 1974, 62, 1448–1461. [Google Scholar] [CrossRef]
- Tzaras, C.; Saunders, S.R. An improved heuristic UTD solution for multiple edge transition zone diffraction. IEEE Trans. Antennas Propag. 2001, 49, 1678–1682. [Google Scholar] [CrossRef]
- Koutitas, G.; Tzaras, C. A UTD Solution for Multiple Round Surfaces. IEEE Trans. Antennas Propag. 2006, 54, 1277–1283. [Google Scholar] [CrossRef]
- Vogler, L.E. An attenuation function for multiple knife edge diffraction. Radio Sci. 1982, 17, 1541–1546. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Carrier | 45 GHz |
TX power | 0 dB |
Height of the TX/RX | 1.2 m/1.2 m |
Gain of the horn antenna | 25 dB |
Polarization of the horn | vertical |
Half Power Beam Width (HPBW) of the horn | 10° |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, Y.; Li, B. The Diffraction Research of Cylindrical Block Effect Based on Indoor 45 GHz Millimeter Wave Measurements. Information 2017, 8, 50. https://doi.org/10.3390/info8020050
Li X, Li Y, Li B. The Diffraction Research of Cylindrical Block Effect Based on Indoor 45 GHz Millimeter Wave Measurements. Information. 2017; 8(2):50. https://doi.org/10.3390/info8020050
Chicago/Turabian StyleLi, Xingrong, Yongqian Li, and Baogang Li. 2017. "The Diffraction Research of Cylindrical Block Effect Based on Indoor 45 GHz Millimeter Wave Measurements" Information 8, no. 2: 50. https://doi.org/10.3390/info8020050