CRISPR/Cas9-Mediated Gene Editing in Salmonids Cells and Efficient Establishment of Edited Clonal Cell Lines
<p>sgRNA analysis and in vitro cleavage assay for <span class="html-italic">cr2</span> and <span class="html-italic">mmp9</span> genes. (<b>a</b>) sgRNA analysis on 2% agarose gel. UD: undenatured sgRNA, D: denatured sgRNA. Single bands detected for the denatured sgRNAs highlighted the purity of the products, and multiple bands in the undenatured sgRNA resulted from the presence of RNA secondary structures; (<b>b</b>) gel shows duplicate lanes for each sample. Lanes 1–6: experimental samples, lane 7: no Cas9 control, lane 8: no sgRNA control; (<b>c</b>) lane 1: no Cas9 control, lane 2: no sgRNA control, lanes 3–5: experimental samples. Cleavage products at expected band sizes were detected for all samples containing the sgRNA + Cas9 + gDNA. No product at the expected band size was observed for all the control samples.</p> "> Figure 2
<p>Ribonucleoprotein (RNP) and plasmid (px458) transfection of (<b>a</b>) ASK-1 and (<b>b</b>) CHSE-214 cells. Vertical panels show cells transfected with (i) RNP (sgRNA:Cas9-EGFP complex); (ii) Cas9-EGFP protein control; (iii) plasmid (px458); (iv) sham control. Horizontal panels show pictures of cells taken with (1) fluorescent channel; (2) light channel; (3) overlay of the light and fluorescent panels. Pictures were taken at day 7 after RNP electroporation (1600 V, 10 ms, 3 pulses) and day 2 after px458 electroporation (1200 V, 20 ms, 2 pulses). Strong adherence of Cas9-EGFP was observed on the cell surface of CHSE-214, and it was difficult to entirely wash off with PBS, explaining the high background fluorescence in the Cas9-EGFP- and RNP-transfected CHSE-214 cells. Magnification X20. (Fluorescent pictures of transfected SHK-1 cells are not shown).</p> "> Figure 3
<p>Analyses of mutations in the target regions of <span class="html-italic">cr2</span> and <span class="html-italic">mmp9</span> genes due to the applied CRISPR/Cas9 strategies. (<b>a</b>) T7E1 assay of the <span class="html-italic">cr2</span> RNP-transfected CHSE-214 cells. Cleaved fragments corresponding to T7 endonuclease 1 digestion of gDNA extract from the RNP-transfected cells are indicated with white arrows in lanes 3 and 4. Similar results were obtained in RNP-transfected ASK-1 and SHK-1 cells for both <span class="html-italic">cr2</span> and <span class="html-italic">mmp9</span>. (<b>b</b>) Representative Sanger sequencing chromatogram for the target region of <span class="html-italic">cr2</span> (upper left) and mmp9 (upper right) in ASK-1 cells, either wild-type (WT) or edited with CRISPR/Cas9. The binding regions are represented by the sgRNA rectangular bar, and the edited regions are boxed in dashed lines. (<b>c</b>) Representative output of DECODRE analysis of a <span class="html-italic">cr2</span> RNP-transfected- (lower left) and an <span class="html-italic">mmp9</span> RNP-transfected (lower right) ASK-1 cell. Indel type and editing frequency are indicated, as well as the aligned sequences of the wild-type and edited samples. The sgRNA including the PAM sequences (red and green bar) highlights the exact target sequence and Cas9 cut site. Boxed dashed lines indicate the exact site of the observed indel mutations.</p> "> Figure 4
<p>Isolation and clonal expansion of single cell lines following FACS or puromycin selection of positively transfected cells. (<b>a</b>) Micrographs of FACS-isolated single cell-derived clonal ASK-1 cell line at day 14, day 18 and day 27 following FACS (magnification 20× for day 14 and day 18; 5× for day 27); (<b>b</b>) micrograph of FACS-isolated single cell-derived clonal CHSE-214 cell line at day 4 after FACS (magnification 10×); (<b>c</b>) micrograph of puromycin-selected SHK-1 cells at day 20 after puromycin treatment (magnification 10×).</p> "> Figure 5
<p>Targeted regions of interest for (<b>A</b>) <span class="html-italic">cr2</span> and (<b>B</b>) <span class="html-italic">mmp9</span> indicated by their respective sgRNAs and flanked by primers used in amplifying these regions.</p> "> Figure 5 Cont.
<p>Targeted regions of interest for (<b>A</b>) <span class="html-italic">cr2</span> and (<b>B</b>) <span class="html-italic">mmp9</span> indicated by their respective sgRNAs and flanked by primers used in amplifying these regions.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Efficient sgRNA Synthesis Resulted in Effective In Vitro RNP Cleavage of Target Genes
2.2. Transfection and Enrichment of Cells Following Electroporation with RNP, px458 and px459
2.3. Mismatch Assay and Sanger Sequencing Revealed Efficient In Vivo CRISPR/Cas9 Editing of Targeted Genes
2.4. Successful Clonal Expansion of ASK-1, CHSE-214 and SHK-1 Cells Following FACS Enrichment and Antibiotic Selection
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Design, Synthesis and In Vitro Cleavage Evaluation of sgRNA
4.3. RNP Complex Formation
4.4. Plasmid Construction
4.5. Transfection of ASK-1, SHK-1 and CHSE-214 Cells by Electroporation with RNP and Plasmid
4.6. T7 Endonuclease 1 (T7E1) Mismatch Detection Assay
4.7. Enrichment and Propagation of Edited Cells
4.8. Sanger Sequencing and CRISPR Edit Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Ahmed, N.; Thompson, S.; Glaser, M. Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Lafferty, K.D.; Harvell, C.D.; Conrad, J.M.; Friedman, C.S.; Kent, M.L.; Kuris, A.M.; Powell, E.N.; Rondeau, D.; Saksida, S.M. Infectious diseases affect marine fisheries and aquaculture economics. Ann. Rev. Mar. Sci. 2015, 7, 471–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heler, R.; Samai, P.; Modell, J.W.; Weiner, C.; Goldberg, G.W.; Bikard, D.; Marraffini, L.A. Cas9 specifies functional viral targets during CRISPR–Cas adaptation. Nature 2015, 519, 199–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Kumar, S.; Rymarquis, L.A.; Ezura, H.; Nekrasov, V. Editorial: CRISPR-cas in agriculture: Opportunities and challenges. Front. Plant Sci. 2021, 12, 672329. [Google Scholar] [CrossRef]
- Liu, W.; Li, L.; Jiang, J.; Wu, M.; Lin, P. Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precis. Clin. Med. 2021, 4, 179–191. [Google Scholar] [CrossRef]
- Singh, P.; Ali, S.A. Impact of CRISPR-Cas9-based genome engineering in farm animals. Vet. Sci. 2021, 8, 122. [Google Scholar] [CrossRef]
- Wargelius, A.; Leininger, S.; Skaftnesmo, K.O.; Kleppe, L.; Andersson, E.; Taranger, G.L.; Schulz, R.W.; Edvardsen, R.B. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci. Rep. 2016, 6, 21284. [Google Scholar] [CrossRef] [Green Version]
- Edvardsen, R.B.; Leininger, S.; Kleppe, L.; Skaftnesmo, K.O.; Wargelius, A. Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation. PLoS ONE 2014, 9, e108622. [Google Scholar] [CrossRef]
- Datsomor, A.K.; Zic, N.; Li, K.; Olsen, R.E.; Jin, Y.; Vik, J.O.; Edvardsen, R.B.; Grammes, F.; Wargelius, A.; Winge, P. CRISPR/Cas9-mediated ablation of elovl2 in Atlantic salmon (Salmo salar L.) inhibits elongation of polyunsaturated fatty acids and induces Srebp-1 and target genes. Sci. Rep. 2019, 9, 7533. [Google Scholar] [CrossRef] [Green Version]
- Japan embraces CRISPR-edited fish. Nat. Biotechnol. 2022, 40, 10. [CrossRef] [PubMed]
- Zhong, J.; Wang, Y.; Zhu, Z. Introduction of the human lactoferrin gene into grass carp (Ctenopharyngodon idellus) to increase resistance against GCH virus. Aquaculture 2002, 214, 93–101. [Google Scholar] [CrossRef]
- Li, Y.; Lai, J.; Zhang, X.; Wang, Y.; Zhang, Z. Development of an RNA anti-parasite based on CRISPR-Cas9 against Chilodonella piscicola. Aquaculture 2022, 552, 738025. [Google Scholar] [CrossRef]
- Sarmasik, A.; Warr, G.; Chen, T.T. Production of transgenic medaka with increased resistance to bacterial pathogens. Mar. Biotechnol. 2002, 4, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, A.; Tengs, T.; Grimholt, U. Issues with RNA-seq analysis in non-model organisms: A salmonid example. Dev. Comp. Immunol. 2017, 75, 38–47. [Google Scholar] [CrossRef]
- Glasauer, S.M.; Neuhauss, S.C. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol. Genet. Genom. 2014, 289, 1045–1060. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Yuan, Y.; Zhu, F.; Hong, Y.; Ge, R. Efficient genome editing using CRISPR/Cas9 ribonucleoprotein approach in cultured Medaka fish cells. Biol. Open 2018, 7, bio035170. [Google Scholar] [CrossRef] [Green Version]
- Gratacap, R.L.; Jin, Y.H.; Mantsopoulou, M.; Houston, R.D. Efficient genome editing in multiple salmonid cell lines using ribonucleoprotein complexes. Mar. Biotechnol. 2020, 22, 717–724. [Google Scholar] [CrossRef]
- Dehler, C.E.; Boudinot, P.; Martin, S.A.; Collet, B. Development of an efficient genome editing method by CRISPR/Cas9 in a fish cell line. Mar. Biotechnol. 2016, 18, 449–452. [Google Scholar] [CrossRef]
- Escobar-Aguirre, S.; Arancibia, D.; Escorza, A.; Bravo, C.; Andrés, M.E.; Zamorano, P.; Martínez, V. Development of a bicistronic vector for the expression of a CRISPR/Cas9-m cherry system in fish cell lines. Cells 2019, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Gratacap, R.L.; Regan, T.; Dehler, C.E.; Martin, S.A.M.; Boudinot, P.; Collet, B.; Houston, R.D. Efficient CRISPR/Cas9 genome editing in a salmonid fish cell line using a lentivirus delivery system. BMC Biotechnol. 2020, 20, 35. [Google Scholar] [CrossRef] [PubMed]
- Dehler, C.E.; Lester, K.; Della Pelle, G.; Jouneau, L.; Houel, A.; Collins, C.; Dovgan, T.; Machat, R.; Zou, J.; Boudinot, P.; et al. Viral resistance and IFN signaling in STAT2 knockout fish cells. J. Immunol. 2019, 203, 465–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoppo, M.; Okoniewski, N.; Pantelyushin, S.; Vom Berg, J.; Schirmer, K. A ribonucleoprotein transfection strategy for CRISPR/Cas9-mediated gene editing and single cell cloning in rainbow trout cells. Cell Biosci. 2021, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Conant, D.; Hsiau, T.; Rossi, N.; Oki, J.; Maures, T.; Waite, K.; Yang, J.; Joshi, S.; Kelso, R.; Holden, K.; et al. Inference of CRISPR edits from sanger trace data. CRISPR J. 2022, 5, 123–130. [Google Scholar] [CrossRef]
- Schiotz, B.L.; Jorgensen, S.M.; Rexroad, C.; Gjoen, T.; Krasnov, A. Transcriptomic analysis of responses to infectious salmon anemia virus infection in macrophage-like cells. Virus Res. 2008, 136, 65–74. [Google Scholar] [CrossRef]
- Valenzuela-Miranda, D.; Boltana, S.; Cabrejos, M.E.; Yanez, J.M.; Gallardo-Escarate, C. High-throughput transcriptome analysis of ISAV-infected Atlantic salmon Salmo salar unravels divergent immune responses associated to head-kidney, liver and gills tissues. Fish Shellfish Immunol. 2015, 45, 367–377. [Google Scholar] [CrossRef]
- Collet, B.; Collins, C.; Lester, K. Engineered cell lines for fish health research. Dev. Comp. Immunol. 2018, 80, 34–40. [Google Scholar] [CrossRef]
- Lopez, A.; Fernandez-Alonso, M.; Rocha, A.; Estepa, A.; Coll, J.M. Transfection of epithelioma papulosum cyprini (EPC) carp cells. Biotechnol. Lett. 2001, 23, 481–487. [Google Scholar] [CrossRef]
- Chi, H.; Zhang, Z.; Inami, M.; Bøgwald, J.; Zhan, W.; Dalmo, R.A. Molecular characterizations and functional assessments of GATA-3 and its splice variant in Atlantic cod (Gadus morhua L.). Dev. Comp. Immunol. 2012, 36, 491–501. [Google Scholar] [CrossRef]
- Marivin, E.; Mourot, B.; Loyer, P.; Rime, H.; Bobe, J.; Fostier, A. Transfection of isolated rainbow trout, Oncorhynchus mykiss, granulosa cells through chemical transfection and electroporation at 12 °C. General Comp. Endocrinol. 2015, 221, 165–172. [Google Scholar] [CrossRef]
- Uusi-Mäkelä, M.I.E.; Barker, H.R.; Bäuerlein, C.A.; Häkkinen, T.; Nykter, M.; Rämet, M. Chromatin accessibility is associated with CRISPR-Cas9 efficiency in the zebrafish (Danio rerio). PLoS ONE 2018, 13, e0196238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Kim, D.; Cho, S.W.; Kim, J.; Kim, J.S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014, 24, 1012–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, G.; Zhang, X.; An, C.; Cheng, C.; Wang, H. Temperature effect on CRISPR-Cas9 mediated genome editing. J. Genet. Genom. 2017, 44, 199–205. [Google Scholar] [CrossRef] [PubMed]
- David, S.R.; Maheshwaram, S.K.; Shet, D.; Lakshminarayana, M.B.; Soni, G.V. Temperature dependent in vitro binding and release of target DNA by Cas9 enzyme. Sci. Rep. 2022, 12, 15243. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef]
CRISPR/Cas9 Target | sgRNA Sequences (5′-3′) | Primers (5′-3′) | Product Size (bp) |
---|---|---|---|
cr2 (exon 2) | cr2_01: AACGGCGCAUCACAUUUCGA cr2_02: UGCGUGUGUGGAUAGGACAA cr3_03: CUCGAUUUGCGUGUGUGGAU | F: TTTGACACTTGATAATGCGACTGC R: ACAAGGCAAAGTCCACTTTAACAC | 289 |
mmp9 (exon 2) | mmp9_01: CAAACUUCUUCAAGUAGCUC mmp9_02: ACCGCAGCGAGGUGCCUUCA mmp9_03: ACAUCAGGGACACCGCAGCG | F: TATGTCCGATGCTGTGCCTC R: AACACAAGACGTGAGGGTGG | 710 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strømsnes, T.A.H.; Schmidke, S.E.; Azad, M.; Singstad, Ø.; Grønsberg, I.M.; Dalmo, R.A.; Okoli, A.S. CRISPR/Cas9-Mediated Gene Editing in Salmonids Cells and Efficient Establishment of Edited Clonal Cell Lines. Int. J. Mol. Sci. 2022, 23, 16218. https://doi.org/10.3390/ijms232416218
Strømsnes TAH, Schmidke SE, Azad M, Singstad Ø, Grønsberg IM, Dalmo RA, Okoli AS. CRISPR/Cas9-Mediated Gene Editing in Salmonids Cells and Efficient Establishment of Edited Clonal Cell Lines. International Journal of Molecular Sciences. 2022; 23(24):16218. https://doi.org/10.3390/ijms232416218
Chicago/Turabian StyleStrømsnes, Trygve A. H., Sebastian E. Schmidke, Mitra Azad, Øyvind Singstad, Idun M. Grønsberg, Roy A. Dalmo, and Arinze S. Okoli. 2022. "CRISPR/Cas9-Mediated Gene Editing in Salmonids Cells and Efficient Establishment of Edited Clonal Cell Lines" International Journal of Molecular Sciences 23, no. 24: 16218. https://doi.org/10.3390/ijms232416218
APA StyleStrømsnes, T. A. H., Schmidke, S. E., Azad, M., Singstad, Ø., Grønsberg, I. M., Dalmo, R. A., & Okoli, A. S. (2022). CRISPR/Cas9-Mediated Gene Editing in Salmonids Cells and Efficient Establishment of Edited Clonal Cell Lines. International Journal of Molecular Sciences, 23(24), 16218. https://doi.org/10.3390/ijms232416218