Monitoring Human Milk ?-Casein Phosphorylation and O-Glycosylation Over Lactation Reveals Distinct Differences between the Proteome and Endogenous Peptidome
<p>Proposed build-up of human milk casein micelles and proteoforms of casein proteins. (<b>A</b>) The three casein proteins in human milk, β-casein (dark purple), αS1-casein (magenta), and κ-casein (gold) are depicted according to their size and with known glycan structures annotated (as <span class="html-italic">N</span>- or <span class="html-italic">O</span>-glycans). These together interact to form submicellar particles, which constitute the building blocks of the casein micelles held together by colloidal calcium phosphate nanoclusters (light blue). (<b>B</b>) Our novel observation of β-casein as an <span class="html-italic">O</span>-glycoprotein, depicted as a spherical and unfolded structure. Lollipop depictions of the PTMs identified are shown on the relative sequence of the protein, where P indicates a phosphorylated residue and G indicates the newly discovered <span class="html-italic">O</span>-glycosylated residues; the height of the lollipop depictions is proportional to the relative abundances of the modifications identified on these sites.</p> "> Figure 2
<p>Deconvoluted mass spectra depicting the β-casein proteoforms identified in the whole milk of donor two throughout lactation. The non-glycosylated proteoforms (yellow) comprised phosphorylation in the range of 0–5P and were confirmed by database search of the intact protein LC-MS/MS results. Minor glycosylated proteoforms (~0–4% relative abundance of the most abundant β-casein proteoform; purple) could be annotated in the intact protein LC-MS data by the mass shift induced by the glycan residue masses.</p> "> Figure 3
<p>Illustrative EThcD fragmentation spectra of β-casein phosphopeptides. The N-terminal peptide <sub>16</sub>RETIESLSSSEESIT<sub>30</sub> with up to seven phosphosites is depicted with varying degrees of site occupancy in the peptidome (<b>A</b>–<b>C</b>) and proteome (<b>D</b>). Designated phosphosites are indicated as red amino acids in the peptide sequence. Confidence in the phosphosite annotations are evident from the precursor mass with the neutral loss of phosphorylation from Ser (M−98 Da) upon fragmentation, with additional b- and y-ions from the peptide backbone placing the -98 Da at specific Ser residues. (<b>A</b>) Peptidome phosphopeptide harboring two phosphorylated Ser residues, the inset of <span class="html-italic">m/z</span> 100–800 shows the b- and y-ion series that might otherwise be obscured by the intensity of the other ions. (<b>B</b>) Peptidome peptide with three phosphorylated Ser residues. (<b>C</b>) Peptidome peptide with four phosphorylated Ser residues. (<b>D</b>) Proteome peptide with two phosphorylated Ser residues.</p> "> Figure 4
<p>Semi-quantitative analysis of phosphorylated and glycosylated amino acids detected in β-casein across lactation. (<b>A</b>) Total number of detections of Thr18, Ser21, Ser23, Ser24, Ser25, Ser28, Thr30, Thr208, Thr214, and Ser225 for each donor in either the peptidome and proteome, colored for the presence of phosphorylation (yellow), glycosylation (purple), or without modifications (grey). (<b>B</b>) Percentage of modified amino acids amongst the total number of detections, separately displayed for lactation weeks 1, 2, 3, 4, 6, 8, 10, 12, and 16. While the observed PTMs are donor-specific, overall, the peptidome data displays a greater relative abundance of phosphorylated and glycosylated sites than the proteome data, and highly similar changes can be seen across lactation for both donors. Whereas all phosphorylation sites are near the N-terminus, the <span class="html-italic">O</span>-glycosylation sites are all at the C-terminus of β-casein.</p> "> Figure 5
<p>EThcD fragmentation spectra of the C-terminal β-casein peptide <sub>197</sub>LLNQELLLNPTHQYPVTQPLAPVHNPISV<sub>226</sub> decorated by distinct <span class="html-italic">O</span>-glycans. (<b>A</b>) EThcD spectra with the <span class="html-italic">O</span>-glycopeptide carrying N<sub>1</sub>H<sub>1</sub> glycosylation. (<b>B</b>) EThcD spectra with the <span class="html-italic">O</span>-glycopeptide carrying a sialylated glycan, N<sub>1</sub>H<sub>1</sub>S<sub>2</sub>. (<b>C</b>) EThcD spectra with the <span class="html-italic">O</span>-glycopeptide carrying sialylated and fucosylated glycans, N<sub>1</sub>H<sub>1</sub>S<sub>1</sub> and N<sub>1</sub>H<sub>1</sub>F<sub>1</sub>. Note that a mixture of positional isomers could have been fragmented in the presented spectra and that different glycan structures likely exist for the displayed annotations. Only major glycan fragments are annotated. The monosaccharide legend is displayed at the bottom.</p> "> Figure 6
<p>Site analysis of glycan species identified across the peptidome and proteome in each of the donors. (<b>A</b>) The glycan species are displayed for the peptidome and proteome at all possible Ser and Thr sites across the protein backbone for donors one and two. Glycan species are displayed as stacked bars of PSMs per site, with each glycan species represented with a different color. The sites Thr207 and Thr214 in the peptidome and proteome have the highest number of <span class="html-italic">O</span>-glyco-PSMs and are occupied by primarily N<sub>1</sub> and N<sub>1</sub>H<sub>1</sub> glycans. (<b>B</b>) Schematic representations of the nine different <span class="html-italic">O</span>-glycans identified on human β-casein. Our MS method did not distinguish structural elements of the glycosylation, and the representations only inform on the composition of the glycan species.</p> "> Figure 7
<p>Changes in abundances of <span class="html-italic">O</span>-glycosylated peptide variants during early and late lactation. All presented ion traces originate from donor one and show the C-terminal β-casein ladder peptide series beginning with <sub>190</sub>AVPVQALLLNQ ELLLNPTHQIYPVTQPLAPVHNPISV<sub>226</sub> and ending with the antimicrobial peptide <sub>200</sub>QELLLNPTHQYPVTQPLAPVHNPISV<sub>226</sub>. All ladder peptides are decorated by different <span class="html-italic">O</span>-glycan species, as containing a single glycan on Thr207 or Thr214, or having both sites occupied. All ladder peptides were found decorated with N<sub>1</sub>, N<sub>1</sub>H<sub>1</sub> or N<sub>1</sub>H<sub>1</sub>S<sub>1</sub> glycan species. Precursor ion traces are depicted as non-modified (left) and glycosylated (right). (<b>A</b>) MS1 traces of the differing glycopeptides relative to the non-modified peptide in week 1. (<b>B</b>) MS1 traces of the differing glycopeptides relative to the non-modified peptide in week 6. (<b>C</b>) MS1 traces of the differing glycopeptides relative to the non-modified peptide in week 16.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Mass Analysis of Intact β-Casein Proteoforms
2.2. Data Analysis Strategy for Bottom-Up Mass Spectrometry
2.3. β-Casein Phosphorylation Analysis
2.4. β-Casein Glycosylation Analysis
3. Discussion
3.1. Phosphorylation Differences between β-Casein and Its Peptidome
3.2. O-Glycosylation Changes Across Lactation in the β-Casein Protein and Its Peptidome
4. Materials and Methods
4.1. Human Subjects and Milk Samples
4.2. Whole Milk Proteolytic Digestion
4.3. Skimmed Milk Isolation of Endogenous Peptides
4.4. High-Pressure Liquid Chromatography Tandem Mass Spectrometry Glycopeptide Analysis
4.5. Glycopeptide Identification
4.6. Intact Protein Analysis by Mass Spectrometry
4.6.1. Preparation of Human Milk Proteins for Intact Protein LC-MS and LC-MS/MS
4.6.2. Intact Protein LC-MS and LC-MS/MS Analyses
4.6.3. Database Generation for Intact Protein Analysis
4.6.4. Proteoform Library Generation for Matching of Intact Masses from LC-MS
4.6.5. Data Analysis for Intact Mass LC-MS and LC-MS/MS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, X.; Jackson, R.T.; Khan, S.A.; Ahuja, J.; Pehrsson, P.R. Human milk nutrient composition in the United States: Current knowledge, challenges, and research needs. Curr. Dev. Nutr. 2018, 2, nzy025. [Google Scholar] [CrossRef] [Green Version]
- Donovan, S.M. Human milk proteins: Composition and physiological significance. Nestle Nutr. Inst. Workshop Ser. 2019, 90, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Andreas, N.J.; Kampmann, B.; Mehring Le-Doare, K. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Weber, D.; Xu, W.; Durbin-Johnson, B.P.; Phinney, B.S.; Lonnerdal, B. Absolute quantification of human milk caseins and the whey/casein ratio during the first year of lactation. J. Proteome Res. 2017, 16, 4113–4121. [Google Scholar] [CrossRef]
- Loos, R.J.F. From nutrigenomics to personalizing diets: Are we ready for precision medicine? Am. J. Clin. Nutr. 2019, 109, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Bode, L.; Raman, A.S.; Murch, S.H.; Rollins, N.C.; Gordon, J.I. Understanding the mother-breastmilk-infant “triad”. Science 2020, 367, 1070–1072. [Google Scholar] [CrossRef]
- Nielsen, S.D.; Beverly, R.L.; Qu, Y.; Dallas, D.C. Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chem. 2017, 232, 673–682. [Google Scholar] [CrossRef]
- Atkinson, S.A.; Lönnerdal, B.O. B-nonprotein nitrogen fractions of human milk. In Handbook of Milk Composition; Jensen, R.G., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 369–387. [Google Scholar] [CrossRef]
- Ross, S.A.; Clark, R.M. Nitrogen distribution in human milk from 2 to 16 weeks postpartum. J. Dairy Sci. 1985, 68, 3199–3201. [Google Scholar] [CrossRef]
- Carlson, S.E. Human milk nonprotein nitrogen: Occurrence and possible functions. Adv. Pediatr. 1985, 32, 43–70. [Google Scholar]
- Dallas, D.C.; Smink, C.J.; Robinson, R.C.; Tian, T.; Guerrero, A.; Parker, E.A.; Smilowitz, J.T.; Hettinga, K.A.; Underwood, M.A.; Lebrilla, C.B.; et al. Endogenous human milk peptide release is greater after preterm birth than term birth. J. Nutr. 2015, 145, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, A.; Dallas, D.C.; Contreras, S.; Chee, S.; Parker, E.A.; Sun, X.; Dimapasoc, L.; Barile, D.; German, J.B.; Lebrilla, C.B. Mechanistic peptidomics: Factors that dictate specificity in the formation of endogenous peptides in human milk. Mol. Cell. Proteom. 2014, 13, 3343–3351. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Cui, X.W.; Zhang, J.; Fu, Z.Y.; Guo, X.R.; Sun, L.Z.; Ji, C.B. Peptidome analysis of human skim milk in term and preterm milk. Biochem. Biophys. Res. Commun. 2013, 438, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Dingess, K.A.; de Waard, M.; Boeren, S.; Vervoort, J.; Lambers, T.T.; van Goudoever, J.B.; Hettinga, K. Human milk peptides differentiate between the preterm and term infant and across varying lactational stages. Food Funct. 2017, 8, 3769–3782. [Google Scholar] [CrossRef]
- Dallas, D.C.; Guerrero, A.; Khaldi, N.; Castillo, P.A.; Martin, W.F.; Smilowitz, J.T.; Bevins, C.L.; Barile, D.; German, J.B.; Lebrilla, C.B. Extensive In Vivo human milk peptidomics reveals specific proteolysis yielding protective antimicrobial peptides. J. Proteome Res. 2013, 12, 2295–2304. [Google Scholar] [CrossRef] [Green Version]
- Elzoghby, A.O.; Abo El-Fotoh, W.S.; Elgindy, N.A. Casein-based formulations as promising controlled release drug delivery systems. J. Control. Release 2011, 153, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Głąb, T.K.; Boratyński, J. Potential of casein as a carrier for biologically active agents. Top. Curr. Chem. 2017, 375, 71. [Google Scholar] [CrossRef] [Green Version]
- Dallas, D.C.; German, J.B. Enzymes in human milk. Nestle Nutr. Inst. Workshop Ser. 2017, 88, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Lönnerdal, B. Human milk proteins. In Protecting Infants through Human Milk; Springer: Boston, MA, USA, 2004; pp. 11–25. [Google Scholar]
- Lonnerdal, B. Bioactive proteins in human milk: Health, nutrition, and implications for infant formulas. J. Pediatr. 2016, 173, S4–S9. [Google Scholar] [CrossRef] [Green Version]
- Beverly, R.L.; Huston, R.K.; Markell, A.M.; McCulley, E.A.; Martin, R.L.; Dallas, D.C. Differences in human milk peptide release along the gastrointestinal tract between preterm and term infants. Clin. Nutr. 2020. [Google Scholar] [CrossRef]
- Beverly, R.L.; Huston, R.K.; Markell, A.M.; McCulley, E.A.; Martin, R.L.; Dallas, D.C. Milk peptides survive In Vivo gastrointestinal digestion and are excreted in the stool of infants. J. Nutr. 2019, 150, 712–721. [Google Scholar] [CrossRef]
- Nielsen, S.D.; Beverly, R.L.; Dallas, D.C. Peptides released from foremilk and hindmilk proteins by breast milk proteases are highly similar. Front. Nutr. 2017, 4, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallas, D.C.; Guerrero, A.; Khaldi, N.; Borghese, R.; Bhandari, A.; Underwood, M.A.; Lebrilla, C.B.; German, J.B.; Barile, D. A peptidomic analysis of human milk digestion in the infant stomach reveals protein-specific degradation patterns. J. Nutr. 2014, 144, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Deglaire, A.; Oliveira, S.; Jardin, J.; Briard-Bion, V.; Kroell, F.; Emily, M.; Ménard, O.; Bourlieu, C.; Dupont, D. Impact of human milk pasteurization on the kinetics of peptide release during In Vitro dynamic digestion at the preterm newborn stage. Food Chem. 2019, 281, 294–303. [Google Scholar] [CrossRef]
- Khaldi, N.; Vijayakumar, V.; Dallas, D.C.; Guerrero, A.; Wickramasinghe, S.; Smilowitz, J.T.; Medrano, J.F.; Lebrilla, C.B.; Shields, D.C.; German, J.B. Predicting the important enzymes in human breast milk digestion. J. Agric. Food Chem. 2014, 62, 7225–7232. [Google Scholar] [CrossRef]
- Minervini, F.; Algaron, F.; Rizzello, C.G.; Fox, P.F.; Monnet, V.; Gobbetti, M. Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species. Appl. Environ. Microbiol. 2003, 69, 5297–5305. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhou, Y.; Liu, X.; Zhang, F.; Yan, L.; Chen, L.; Wang, X.; Ruan, H.; Ji, C.; Cui, X.; et al. Antimicrobial activity and mechanism of PDC213, an endogenous peptide from human milk. Biochem. Biophys. Res. Commun. 2017, 484, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Cui, X.; Fu, Y.; Zhang, J.; Zhou, Y.; Sun, Y.; Wang, X.; Li, Y.; Liu, Q.; Chen, T. Antimicrobial activity and mechanism of the human milk-sourced peptide Casein201. Biochem. Biophys. Res. Commun. 2017, 485, 698–704. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Y.; Wang, F.; You, L.; Cao, Y.; Tang, R.; Wen, J.; Cui, X. A novel endogenous antimicrobial peptide CAMP(211-225) derived from casein in human milk. Food Funct. 2020, 11, 2291–2298. [Google Scholar] [CrossRef]
- Molinari, C.E.; Casadio, Y.S.; Hartmann, B.T.; Arthur, P.G.; Hartmann, P.E. Longitudinal analysis of protein glycosylation and beta-casein phosphorylation in term and preterm human milk during the first 2 months of lactation. Br. J. Nutr. 2013, 110, 105–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouhallab, S.; Bouglé, D. Biopeptides of milk: Caseinophosphopeptides and mineral bioavailability. Reprod. Nutr. Dev. 2004, 44, 493–498. [Google Scholar] [CrossRef] [Green Version]
- Kornfeld, R.; Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1985, 54, 631–664. [Google Scholar] [CrossRef]
- Hart, G.W.; Haltiwanger, R.S.; Holt, G.D.; Kelly, W.G. Glycosylation in the nucleus and cytoplasm. Annu. Rev. Biochem. 1989, 58, 841–874. [Google Scholar] [CrossRef]
- Froehlich, J.W.; Dodds, E.D.; Barboza, M.; McJimpsey, E.L.; Seipert, R.R.; Francis, J.; An, H.J.; Freeman, S.; German, J.B.; Lebrilla, C.B. Glycoprotein expression in human milk during lactation. J. Agric. Food Chem. 2010, 58, 6440–6448. [Google Scholar] [CrossRef] [Green Version]
- Varki, A. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 1993, 3, 97–130. [Google Scholar] [CrossRef] [PubMed]
- Smilowitz, J.T.; Lebrilla, C.B.; Mills, D.A.; German, J.B.; Freeman, S.L. Breast milk oligosaccharides: Structure-function relationships in the neonate. Annu. Rev. Nutr. 2014, 34, 143–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eidelman, A.I.; Schanler, R.J. Breastfeeding and the use of human milk. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef] [Green Version]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [Green Version]
- Lemay, D.G.; Ballard, O.A.; Hughes, M.A.; Morrow, A.L.; Horseman, N.D.; Nommsen-Rivers, L.A. RNA sequencing of the human milk fat layer transcriptome reveals distinct gene expression profiles at three stages of lactation. PLoS ONE 2013, 8, e67531. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Dingess, K.A.; Mank, M.; Stahl, B.; Heck, A.J.R. Personalized profiling reveals donor- and lactation-specific trends in the human milk proteome and peptidome. J. Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- Reiding, K.R.; Bondt, A.; Franc, V.; Heck, A.J.R. The benefits of hybrid fragmentation methods for glycoproteomics. TrAC Trends Anal. Chem. 2018, 108, 260–268. [Google Scholar] [CrossRef]
- Riley, N.M.; Hebert, A.S.; Westphall, M.S.; Coon, J.J. Capturing site-specific heterogeneity with large-scale N-glycoproteome analysis. Nat. Commun. 2019, 10, 1311. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.Q.; Zeng, W.F.; Fang, P.; Cao, W.Q.; Liu, C.; Yan, G.Q.; Zhang, Y.; Peng, C.; Wu, J.Q.; Zhang, X.J.; et al. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. Nat. Commun. 2017, 8, 438. [Google Scholar] [CrossRef]
- Ferranti, P.; Traisci, M.V.; Picariello, G.; Nasi, A.; Boschi, V.; Siervo, M.; Falconi, C.; Chianese, L.; Addeo, F. Casein proteolysis in human milk: Tracing the pattern of casein breakdown and the formation of potential bioactive peptides. J. Dairy Res. 2004, 71, 74–87. [Google Scholar] [CrossRef]
- Manso, M.A.; Miguel, M.; López-Fandiño, R. Application of capillary zone electrophoresis to the characterisation of the human milk protein profile and its evolution throughout lactation. J. Chromatogr. A 2007, 1146, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Neville, M.C.; Keller, R.P.; Casey, C.; Allen, J.C. Calcium partitioning in human and bovine milk. J. Dairy Sci. 1994, 77, 1964–1975. [Google Scholar] [CrossRef]
- Froehlich, J.W.; Chu, C.S.; Tang, N.; Waddell, K.; Grimm, R.; Lebrilla, C.B. Label-free liquid chromatography-tandem mass spectrometry analysis with automated phosphopeptide enrichment reveals dynamic human milk protein phosphorylation during lactation. Anal. Biochem. 2011, 408, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Poth, A.G.; Deeth, H.C.; Alewood, P.F.; Holland, J.W. Analysis of the human casein phosphoproteome by 2-D electrophoresis and MALDI-TOF/TOF MS reveals new phosphoforms. J. Proteome Res. 2008, 7, 5017–5027. [Google Scholar] [CrossRef]
- Greenberg, R.; Groves, M.L.; Dower, H.J. Human beta-casein. Amino acid sequence and identification of phosphorylation sites. J. Biol. Chem. 1984, 259, 5132–5138. [Google Scholar] [CrossRef]
- Kroening, T.A.; Baxter, J.H.; Anderson, S.A.; Hards, R.G.; Harvey, L.; Mukerji, P. Concentrations and anti-Haemophilus influenzae activities of beta-casein phosphoforms in human milk. J. Pediatr. Gastroenterol. Nutr. 1999, 28, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Tagliabracci, V.S.; Engel, J.L.; Wen, J.; Wiley, S.E.; Worby, C.A.; Kinch, L.N.; Xiao, J.; Grishin, N.V.; Dixon, J.E. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science 2012, 336, 1150–1153. [Google Scholar] [CrossRef] [Green Version]
- Tagliabracci, V.S.; Wiley, S.E.; Guo, X.; Kinch, L.N.; Durrant, E.; Wen, J.; Xiao, J.; Cui, J.; Nguyen, K.B.; Engel, J.L.; et al. A single kinase generates the majority of the secreted phosphoproteome. Cell 2015, 161, 1619–1632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, N.M.; Malaker, S.A.; Driessen, M.D.; Bertozzi, C.R. Optimal dissociation methods differ for N- and O-glycopeptides. J. Proteome Res. 2020, 19, 3286–3301. [Google Scholar] [CrossRef] [PubMed]
- MacLean, B.; Tomazela, D.M.; Shulman, N.; Chambers, M.; Finney, G.L.; Frewen, B.; Kern, R.; Tabb, D.L.; Liebler, D.C.; MacCoss, M.J. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966–968. [Google Scholar] [CrossRef] [Green Version]
- Reiding, K.R.; Franc, V.; Huitema, M.G.; Brouwer, E.; Heeringa, P.; Heck, A.J.R. Neutrophil myeloperoxidase harbors distinct site-specific peculiarities in its glycosylation. J. Biol. Chem. 2019, 294, 20233–20245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goonatilleke, E.; Huang, J.; Xu, G.; Wu, L.; Smilowitz, J.T.; German, J.B.; Lebrilla, C.B. Human milk proteins and their glycosylation exhibit quantitative dynamic variations during lactation. J. Nutr. 2019. [Google Scholar] [CrossRef]
- Zhu, J.; Lin, Y.H.; Dingess, K.A.; Mank, M.; Stahl, B.; Heck, A.J.R. Quantitative longitudinal inventory of the N-glycoproteome of human milk from a single donor reveals the highly variable repertoire and dynamic site-specific changes. J. Proteome Res. 2020, 19, 1941–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dev, B.C.; Sood, S.M.; DeWind, S.; Slattery, C.W. Kappa-casein and beta-caseins in human milk micelles: Structural studies. Arch. Biochem. Biophys. 1994, 314, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Geraghty, S.R.; Davidson, B.S.; Warner, B.B.; Sapsford, A.L.; Ballard, J.L.; List, B.A.; Akers, R.; Morrow, A.L. The development of a research human milk bank. J. Hum. Lact. 2005, 21, 59–66. [Google Scholar] [CrossRef]
- Zhu, J.; Garrigues, L.; Van den Toorn, H.; Stahl, B.; Heck, A.J.R. Discovery and quantification of non-human proteins in human milk. J. Proteome Res. 2018. [Google Scholar] [CrossRef]
- Dingess, K.A.; van den Toorn, H.W.P.; Mank, M.; Stahl, B.; Heck, A.J.R. Toward an efficient workflow for the analysis of the human milk peptidome. Anal. Bioanal. Chem. 2019, 411, 1351–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dingess, K.A.; Gazi, I.; van den Toorn, H.W.P.; Mank, M.; Stahl, B.; Reiding, K.R.; Heck, A.J.R. Monitoring Human Milk ?-Casein Phosphorylation and O-Glycosylation Over Lactation Reveals Distinct Differences between the Proteome and Endogenous Peptidome. Int. J. Mol. Sci. 2021, 22, 8140. https://doi.org/10.3390/ijms22158140
Dingess KA, Gazi I, van den Toorn HWP, Mank M, Stahl B, Reiding KR, Heck AJR. Monitoring Human Milk ?-Casein Phosphorylation and O-Glycosylation Over Lactation Reveals Distinct Differences between the Proteome and Endogenous Peptidome. International Journal of Molecular Sciences. 2021; 22(15):8140. https://doi.org/10.3390/ijms22158140
Chicago/Turabian StyleDingess, Kelly A., Inge Gazi, Henk W. P. van den Toorn, Marko Mank, Bernd Stahl, Karli R. Reiding, and Albert J. R. Heck. 2021. "Monitoring Human Milk ?-Casein Phosphorylation and O-Glycosylation Over Lactation Reveals Distinct Differences between the Proteome and Endogenous Peptidome" International Journal of Molecular Sciences 22, no. 15: 8140. https://doi.org/10.3390/ijms22158140
APA StyleDingess, K. A., Gazi, I., van den Toorn, H. W. P., Mank, M., Stahl, B., Reiding, K. R., & Heck, A. J. R. (2021). Monitoring Human Milk ?-Casein Phosphorylation and O-Glycosylation Over Lactation Reveals Distinct Differences between the Proteome and Endogenous Peptidome. International Journal of Molecular Sciences, 22(15), 8140. https://doi.org/10.3390/ijms22158140