Understanding Xeroderma Pigmentosum Complementation Groups Using Gene Expression Profiling after UV-Light Exposure
<p>Cluster analysis of control and XP complementation groups before and after UVC-light. Each column represents average transcript expression for duplicate cell lines for control and each of the XP complementation groups before and after 2 J/m<sup>2</sup> UVC-light exposure. Down-regulation is represented as green, up-regulation as red and normal expression as black. The dendrogram represents the relationship between and within the controls and XP complementation groups.</p> "> Figure 2
<p>Example of a Volcano plot of altered transcript expression in control fibroblasts after UVC irradiation. −log<sub>10</sub> (<span class="html-italic">p</span>-value) plotted against log<sub>2</sub> (Fold Change) for transcript expression in control fibroblasts before and after 2 J/m<sup>2</sup> UVC irradiation. Red spots represent 2575 transcripts with <span class="html-italic">p</span> < 0.05 and fold change >2, yellow spots represent transcipts that were not differentially expressed. Volcano plots were generated for each XP complementation group.</p> "> Figure 3
<p>Biological processes with significantly (<span class="html-italic">p</span> < 0.05) different observed (O) <span class="html-italic">vs.</span> expected (E) ratio of transcripts with altered expression after 2 J/m<sup>2</sup> UVC-light treatment. XP-B and XP-F were the only XP complementation groups to have altered neuronal function.</p> ">
Abstract
:1. Introduction
Gene | Genomic Location/Size | Coding Sequence Size (bp) | Clinical Manifestation | UV-Sensitivity | Residual DNA Repair | Relative Frequency | Skin Cancer | Neurological Implications |
---|---|---|---|---|---|---|---|---|
Global Genome Repair | ||||||||
XPC | 3p25 | 3558 | XP | ++ | <10%–30% | High | + | − |
DDB1 | 11q12–q13 | 3420 | N/A | N/A | N/A | N/A | N/A | N/A |
DDB2 (XPE) | 11p12–p11 | 4193 | XP | + | 50% | Rare | + | − |
Transcription Coupled Repair | ||||||||
CSA | 5q12.1 | 2011 | CS | + | Normal | Intermediate | − | ++ |
CSB | 10q11.21 | 4714 | CS | + | Normal | High | − | ++ |
Nucleotide Excision Repair | ||||||||
XPA | 9q22.3 | 1377 | XP | +++ | <5% | High | + | ++ |
XPB | 2q14.3 | 2751 | XP, XP/CS, TTD | ++ | 3%–40% | Rare | +/− | + |
XPD | 19q13.3 | 2400 | XP, XP/CS, TTD | ++ | 15%–50% | Intermediate | + | ++/− |
XPF | 16p13.1 | 2881 | XP | + | 15%–30% | Rare | + | −/+ |
XPG | 13q33.1 | 4091 | XP, XP/CS | ++ | <5%–30% | Rare | + | ++ |
ERCC1 | 19q13.3–q13.2 | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
TTD-A | 6p25.3 | 7503 | TTD | N/A | Rare | − | ++ | |
Translesion Synthesis | ||||||||
DN/A PolH (XPV) | 6p21.1 | 2140 | XP | − | Normal | High | +/− | − |
2. Results and Discussion
3. Experimental Section
Coriell ID | Complementation Group | Sex | Age | Mutation | Estimated DNA Repair Capacity | UV Sensitivity | Neurological Symptoms | Diagnosed Disorder |
---|---|---|---|---|---|---|---|---|
GM03652 | Control | M | 24 | N/A | - | No | No | N/A |
GM00023A | Control | F | 31 | N/A | - | No | No | N/A |
GM00544B | XP-A | M | 10 | 468–469 del | 2% | unknown | unknown | XP with features of CS |
GM02009 | XP-A | F | 10 | 349–353 del frameshift termination, 323G>T | - | Yes | Yes | XP |
GM13025 | XP-B | M | 39 | T>C missense mutation | - | No | Yes | XP with features of CS |
GM13026 | XP-B | M | 36 | T>C missense mutation | - | No | Yes | XP with features of CS |
GM00030A | XP-C | M | 24 | 83 bp insertion at 462 in cDNA | 10%–20% | Yes | No | XP |
GM01881B | XP-C | F | 45 | 1132–1133 del resulting in termination | 10%–20% | Yes | No | XP |
GM00435A | XP-D | F | 23 | 2047C>T cDNA | 30%–50% | Yes | Yes | XP with features of CS |
GM03248A | XP-D | M | 5 | 1805G>A | 30%–50% | Yes | Yes | XP with features of CS |
GM01389A | XP-E | F | 21 | 1224T>C missense mutation, del 1220–1222 | 60% | Yes | No | XP |
GM03542C | XP-F | M | 29 | 1790T>C | 10% | No | Yes | XP |
GM03021B | XP-G | F | 17 | Not known * | 0% | Yes | Yes | XP |
GM16180 | XP-G | F | - | 1116 del TC frameshift truncation | - | Yes | Yes | XP with features of CS |
GM02004 | XP-V | - | - | Not known | - | unknown | No | XPV |
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cleaver, J.E.; Thompson, L.H.; Richardson, A.S.; States, J.C. A summary of mutations in the UV-sensitive disorders: Xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Hum. Mutat. 1999, 14, 9–22. [Google Scholar] [CrossRef]
- Broughton, B.C.; Berneburg, M.; Fawcett, H.; Taylor, E.M.; Arlett, C.F.; Nardo, T.; Stefanini, M.; Menefee, E.; Price, V.H.; Queille, S.; et al. Two individuals with features of both xeroderma pigmentosum and trichothiodystrophy highlight the complexity of the clinical outcomes of mutations in the XPD gene. Hum. Mol. Genet. 2001, 10, 2539–2547. [Google Scholar] [CrossRef] [PubMed]
- Kralund, H.H.; Ousager, L.; Jaspers, N.G.; Raams, A.; Pedersen, E.B.; Gade, E.; Bygum, A. Xeroderma Pigmentosum-Trichothiodystrophy overlap patient with novel XPD/ERCC2 mutation. Rare Dis. 2013, 1. [Google Scholar] [CrossRef]
- Dahbi-Skali, H.; Benamar, L.; Benchikhi, H.; Lakhdar, H.; Pinel, N. PIBIDS syndrome (trichothiodystrophy type F) and skin cancer: An exceptional association. Photodermatol. Photoimmunol. Photomed. 2004, 20, 157–158. [Google Scholar] [CrossRef] [PubMed]
- Cleaver, J.E. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat. Rev. Cancer 2005, 5, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Hess, M.T.; Naegeli, H.; Capobianco, M. Stereoselectivity of human nucleotide excision repair promoted by defective hybridization. J. Biol. Chem. 1998, 273, 27867–27872. [Google Scholar] [CrossRef] [PubMed]
- Bradford, P.T.; Goldstein, A.M.; Tamura, D.; Khan, S.G.; Ueda, T.; Boyle, J.; Oh, K.S.; Imoto, K.; Inui, H.; Moriwaki, S.; et al. Cancer and neurologic degeneration in xeroderma pigmentosum: Long term follow-up characterises the role of DNA repair. J. Med. Genet. 2011, 48, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, K.H.; Lee, M.M.; Scotto, J. Xeroderma Pigmentosum: Cutaneous, Ocular, and neurologic abnormalities in 830 published cases. Arch. Dermatol. 1987, 123, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Kleijer, W.J.; Laugel, V.; Berneburg, M.; Nardo, T.; Fawcett, H.; Gratchev, A.; Jaspers, N.G.; Sarasin, A.; Stefanini, M.; Lehmann, A.R. Incidence of DNA repair deficiency disorders in western Europe: Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. DNA Repair 2008, 7, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Imoto, K.; Nadem, C.; Moriwaki, S.; Nishigori, C.; Oh, K.; Khan, S.G.; Goldstein, A.M.; Kraemer, H.K. Ancient origin of a Japenese xeroderma pigmentosum founder mutation. J. Dermatol. Sci. 2013, 69, 175–176. [Google Scholar] [CrossRef] [PubMed]
- Cleaver, J.E.; Kraemer, K.H. Xeroderma pigmentosum and cockayne’s syndrome. In The Meetabolic and Molecular Basis of Inherited Disease; McGraw-Hill: New York, NY, USA, 1995; pp. 4393–4419. [Google Scholar]
- Bootsma, D.; Hoeijmakers, J.H. The genetic basis of xeroderma pigmentosum. Ann. Genet. 1991, 34, 143–150. [Google Scholar] [PubMed]
- Bootsma, D.; Kraemer, K.H.; Cleaver, J.E.; Hoeijmakers, J.H.J. Nucleotide excision repair syndromes: Xeroderma pigmentosum and trichothiodystrophy. In The Genetic Basis of Human Cancer; Vogelstein, B., Kinzler, K.W., Eds.; McGraw-Hill: New York, NY, USA, 1998; pp. 245–274. [Google Scholar]
- Menck, C.F.M.; Munford, V. DNA repair disease: What do they tell us about cancer and aging? Genet. Mol. Biol. 2014, 37, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Sorlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef] [PubMed]
- Bowden, N.A.; Tooney, P.A.; Scott, R.J. Gene expression profiling of xeroderma pigmentosum. Hered. Cancer Clin. Pract. 2006, 4, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhang, J.; Guo, Y.; Ni, C.; Liang, J.; Cheng, R.; Li, M.; Yao, Z. Genotype-phentoype correlation of Xeroderma pigmentosum in Chinese Han population. Br. J. Dermatol. 2014. [Google Scholar] [CrossRef]
- Boerma, M.; van der Wees, C.G.; Vrieling, H.; Svensson, J.P.; Wondergem, J.; van der Laarse, A.; Mullenders, L.H.; van Zeeland, A.A. Microarray analysis of gene expression profiles of cardiac myocytes and fibroblasts after mechanical stress, ionising or ultraviolet radiation. BMC Genomics 2005, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otto, A.I.; Riou, L.; Marionnet, C.; Mori, T.; Sarasin, A.; Magnaldo, T. Differential behaviours towards ultraviolet A and B radiation of fibroblasts and keratinocytes from normal and DNA-repair-deficient patients. Cancer Res. 1999, 59, 1212–1218. [Google Scholar] [PubMed]
- Gentile, M.; Latonen, L.; Laiho, M. Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses. Nucleic Acids Res. 2003, 31, 4779–4790. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.J.; Itin, P.; Kleijer, W.J.; Kolb, K.; Arlett, C.; Muller, H. Xeroderma pigmentosum-Cockayne syndrome complex in two patients: Absence of skin tumours despite severe deficiency of DNA excision repair. J. Am. Acad. Dermatol. 1993, 29, 883–889. [Google Scholar] [CrossRef]
- Kraemer, K.H.; Patronas, N.J.; Schiffmann, R.; Brooks, B.P.; Tamura, D.; DiGiovanna, J.J. Zeroderma pigmentosum, trichothiodystrophy and Cockayne synfrome: A complex genotype-phenotype relationship. Neuroscience 2007, 145, 1388–1396. [Google Scholar] [CrossRef] [PubMed]
- Shiomi, T.; Harada, Y.; Saito, T.; Shiomi, N.; Okuno, Y.; Yamaizumi, M. An ERCC5 gene with homolgy to yeast RAD2 is involved in group G xeroderma pigmentosum. Mutat. Res. 1994, 314, 167–175. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Thomas, P.D. PANTHER in 2013: Modelling the evolutionof gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013, 41, D377–D386. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Muruganujan, A.; Casagrande, J.T.; Thomas, P.D. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 2013, 8, 1551–1566. [Google Scholar] [CrossRef] [PubMed]
- Schubert, S.; Lehmann, J.; Kalfon, L.; Slor, H.; Falik-Zaccai, T.C.; Emmert, S. Clinical utility gene card for: Xeroderma pigmentosum. Eur. J. Hum. Genet. 2014, 22. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bowden, N.A.; Beveridge, N.J.; Ashton, K.A.; Baines, K.J.; Scott, R.J. Understanding Xeroderma Pigmentosum Complementation Groups Using Gene Expression Profiling after UV-Light Exposure. Int. J. Mol. Sci. 2015, 16, 15985-15996. https://doi.org/10.3390/ijms160715985
Bowden NA, Beveridge NJ, Ashton KA, Baines KJ, Scott RJ. Understanding Xeroderma Pigmentosum Complementation Groups Using Gene Expression Profiling after UV-Light Exposure. International Journal of Molecular Sciences. 2015; 16(7):15985-15996. https://doi.org/10.3390/ijms160715985
Chicago/Turabian StyleBowden, Nikola A., Natalie J. Beveridge, Katie A. Ashton, Katherine J. Baines, and Rodney J. Scott. 2015. "Understanding Xeroderma Pigmentosum Complementation Groups Using Gene Expression Profiling after UV-Light Exposure" International Journal of Molecular Sciences 16, no. 7: 15985-15996. https://doi.org/10.3390/ijms160715985
APA StyleBowden, N. A., Beveridge, N. J., Ashton, K. A., Baines, K. J., & Scott, R. J. (2015). Understanding Xeroderma Pigmentosum Complementation Groups Using Gene Expression Profiling after UV-Light Exposure. International Journal of Molecular Sciences, 16(7), 15985-15996. https://doi.org/10.3390/ijms160715985