A Portable, Cost-Effective and User-Friendly Instrument for Colorimetric Enzyme-Linked Immunosorbent Assay and Rapid Detection of Aflatoxin B1
"> Figure 1
<p>Design and fabrication of the instrument. (<b>A</b>) The structure of the optical chamber and schematic illustration of the portable instrument composed of the opto-collection unit (orange) and the signal processing unit (purple). (<b>B</b>) Photograph of the portable instrument.</p> "> Figure 2
<p>Schematic illustration of the principle for the AFB<sub>1</sub> detection.</p> "> Figure 3
<p>Evaluation of the portable instrument. (<b>A</b>) Absorption spectra of the colored compound before (dash line) and after (solid line) acidification. (<b>B</b>) A photo that a portable instrument using blue LED was measuring OD. (<b>C</b>) Response of the instrument during sample in/out. The sampling interval of the instrument was 1 s. (<b>D</b>) Measurement of a series of diluted sample solutions by the portable instrument (<span class="html-italic">n</span> = 3).</p> "> Figure 4
<p>Effect of ambient light on the instrument. Insets were the photographs taken during the measurement.</p> "> Figure 5
<p>Calibration curve for AFB<sub>1</sub> obtained by both the portable instrument and the professional spectrophotometer (<span class="html-italic">n</span> = 4).</p> "> Figure 6
<p>Rapid quantification of AFB<sub>1</sub> in food samples. (<b>A</b>) Schematic illustration of the rapid quantification by using the portable instrument. Insets were the screenshots taken during steps 1, 2 and 3, respectively. (<b>B</b>) Detection of AFB<sub>1</sub> in real samples (<span class="html-italic">n</span> = 3).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Equipment
2.2. Instrument Fabrication
2.3. Characterization of the Instrument
2.4. Standard Curve for AFB1 Detection
2.5. Analysis of Food Samples
3. Results and Discussion
3.1. Principle for the Detection of AFB1
3.2. Instrument Evaluation
3.3. Effect of Ambient Light
3.4. Standard Curve for AFB1 Detection
3.5. Detection of AFB1 in Food Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Law, J.W.F.; Ab Mutalib, N.S.; Chan, K.G.; Lee, L.H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front. Microbiol. 2015, 5, 770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Vogel, R.F.; Niessen, L. Rapid detection of aflatoxin producing fungi in food by real-time quantitative loop-mediated isothermal amplification. Food Microbiol. 2014, 44, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.J.; Lu, Y.; Meng, Y.Q.; Ye, Z.Z.; Wang, L.; Wang, R.; Zheng, Q.Q.; Wu, H.; Wu, J. Field detection of citrus huanglongbing associated with ‘candidatus liberibacter asiaticus’ by recombinese polymerase amplification within 15 min. J. Agric. Food Chem. 2018, 66, 5473–5480. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, X.J.; Li, Y.B.; Ying, Y.B. A simple and rapid optical biosensor for detection of aflatoxin B1 based on competitive dispersion of gold nanorods. Biosens. Bioelectron. 2013, 47, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.Y.; Wang, S.Y.; Huang, F.C.; Chen, Q.; Li, Y.B.; Liao, M.; Lin, J.H. Rapid detection of salmonella typhimurium using magnetic nanoparticle immunoseparation, nanocluster signal amplification and smartphone image analysis. Sens. Actuators B Chem. 2019, 284, 134–139. [Google Scholar] [CrossRef]
- Martinovic, T.; Andjelkovic, U.; Gajdosik, M.S.; Resetar, D.; Josic, D. Foodborne pathogens and their toxins. J. Proteom. 2016, 147, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.H.; Cai, Q.Q.; Fu, Y.C.; Lei, C.Y.; Yang, W.G. Visual and quantitative detection of E. coli O157:H7 by coupling immunomagnetic separation and quantum dot-based paper strip. Anal. Bioanal. Chem. 2021, 413, 4417–4426. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, F.; Alladio, E.; Baggiani, C.; Cavalera, S.; Giovannoli, C.; Spano, G.; Anfossi, L. Colour-encoded lateral flow immunoassay for the simultaneous detection of aflatoxin B1 and type-B fumonisins in a single Test line. Talanta 2019, 192, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Azri, F.A.; Selamat, J.; Sukor, R. Electrochemical Immunosensor for the detection of aflatoxin B-1 in palm kernel cake and feed samples. Sensors 2017, 17, 2776. [Google Scholar] [CrossRef] [Green Version]
- Duan, H.; Huang, X.L.; Shao, Y.N.; Zheng, L.Y.; Guo, L.; Xiong, Y.H. Size-dependent immunochromatographic assay with quantum dot nanobeads for sensitive and quantitative detection of ochratoxin A in corn. Anal. Chem. 2017, 89, 7062–7068. [Google Scholar] [CrossRef]
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control. 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Zhang, L.L.; Wang, H.R.; Zhang, X.L.; Li, X.C.; Yu, H.Z. Indirect Competitive Immunoassay on a Blu-ray Disc for Digitized Quantitation of Food Toxins. ACS Sens. 2020, 5, 1239–1245. [Google Scholar] [CrossRef]
- McCullum, C.; Tchounwou, P.; Ding, L.S.; Liao, X.; Liu, Y.M. Extraction of aflatoxins from liquid foodstuff samples with polydopamine-coated superparamagnetic nanoparticles for HPLC-MS/MS analysis. J. Agric. Food Chem. 2014, 62, 4261–4267. [Google Scholar] [CrossRef]
- Aldars-Garcia, L.; Sanchis, V.; Ramos, A.J.; Marin, S. Time-course of germination, initiation of mycelium proliferation and probability of visible growth and detectable AFB1 production of an isolate of Aspergillus flavus on pistachio extract agar. Food Microbiol. 2017, 64, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Hatsuta, K.; Niikawa, M.; Imaishi, H. Detoxification of aflatoxin B1 contaminated maize using human CYP3A4. J. Microbiol. Biotechnol. 2020, 30, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.N.; Ying, Y.B.; Ping, J.F. Colorimetric aggregation assay for kanamycin using gold nanoparticles modified with hairpin DNA probes and hybridization chain reaction-assisted amplification. Microchim. Acta 2019, 186, 448. [Google Scholar] [CrossRef] [PubMed]
- Duan, N.; Gong, W.H.; Wu, S.J.; Wang, Z.P. Selection and application of ssDNA Aptamers against clenbuterol hydrochloride based on ssdna library immobilized SELEX. J. Agric. Food Chem. 2017, 65, 1771–1777. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhu, Z.; Zou, Y.; Huang, Y.S.; Liu, D.W.; Jia, S.S.; Xu, D.M.; Wu, M.; Zhou, Y.; Zhou, S.; et al. Target-responsive “sweet” hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets. J. Am. Chem. Soc. 2013, 135, 3748–3751. [Google Scholar] [CrossRef]
- Tao, F.F.; Yao, H.B.; Zhu, F.L.; Hruska, Z.; Liu, Y.L.; Rajasekaran, K.; Bhatnagar, D. A rapid and nondestructive method for simultaneous determination of aflatoxigenic fungus and aflatoxin contamination on corn kernels. J. Agric. Food Chem. 2019, 67, 5230–5239. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; He, K.Y.; Wang, X.Q.; Wang, Q.; Quan, H.R.; Wang, P.L.; Xu, X.H. Recent progress in visual methods for aflatoxin detection. Crit. Rev. Food Sci. Nutr. 2021, 133, 115966. [Google Scholar]
- Asensio, L.; Gonzalez, I.; Garcia, T.; Martin, R. Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control. 2008, 19, 1–8. [Google Scholar] [CrossRef]
- He, F.; Liu, H.; Guo, X.G.; Yin, B.C.; Ye, B.C. Direct exosome quantification via bivalent-cholesterol-labeled dna anchor for signal amplification. Anal. Chem. 2017, 89, 12968–12975. [Google Scholar] [CrossRef] [PubMed]
- Masud, M.K.; Yadav, S.; Isam, M.N.; Nguyen, N.T.; Salomon, C.; Kline, R.; Alamri, H.R.; Alothman, Z.A.; Yamauchi, Y.; Hossain, M.S.A.; et al. Gold-loaded nanoporous ferric oxide nanocubes with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of autoantibody. Anal. Chem. 2017, 89, 11005–11013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.M.; Wan, Q.Q.; Badu-Tawiah, A.K. Mass spectrometry for paper-based immunoassays: Toward on-demand diagnosis. J. Am. Chem. Soc. 2016, 138, 6356–6359. [Google Scholar] [CrossRef] [PubMed]
- Azri, F.A.; Sukor, R.; Selamat, J.; Abu Bakar, F.; Yusof, N.A.; Hajian, R. Electrochemical immunosensor for detection of aflatoxin B₁ based on indirect competitive ELISA. Toxins 2018, 10, 196. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Zhang, X.J.; Wu, B.Q.; Qian, C.; Zhang, F.; Wang, L.; Ye, Z.Z.; Wu, J. Rapid on-site detection of genetically modified soybean products by real-time loop-mediated isothermal amplification coupled with a designed portable amplifier. Food Chem. 2020, 323, 126819. [Google Scholar] [CrossRef]
- Xu, L.Z.; Li, D.Y.; Ramadan, S.; Li, Y.B.; Klein, N. Facile biosensors for rapid detection of COVID-19. Biosens. Bioelectron. 2020, 170, 112673. [Google Scholar] [CrossRef]
- Huang, F.C.; Zhang, H.L.; Wang, L.; Lai, W.H.; Lin, J.H. A sensitive biosensor using double-layer capillary based immunomagnetic separation and invertase-nanocluster based signal amplification for rapid detection of foodborne pathogen. Biosens. Bioelectron. 2018, 100, 583–590. [Google Scholar] [CrossRef]
- Zhu, Z.; Guan, Z.C.; Liu, D.; Jia, S.S.; Li, J.X.; Lei, Z.C.; Lin, S.C.; Ji, T.H.; Tian, Z.Q.; Yang, C.Y.J. Translating molecular recognition into a pressure signal to enable rapid, sensitive, and portable biomedical analysis. Angew. Chem. 2015, 54, 10448–10453. [Google Scholar] [CrossRef]
- Lan, W.S.; Chen, G.P.; Cui, F.; Tan, F.; Liu, R.; Yushupujiang, M. Development of a novel optical biosensor for detection of organophoshorus pesticides based on methyl parathion hydrolase immobilized by metal-chelate affinity. Sensors 2012, 12, 8477–8490. [Google Scholar] [CrossRef]
- Santra, D.; Mandal, S.; Santra, A.; Ghorai, U.K. Cost-effective, wireless, portable device for estimation of hexavalent chromium, fluoride, and iron in drinking water. Anal. Chem. 2018, 90, 12815–12823. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.Z.; Zhang, M.; Yue, T.L.; Wang, X.; Li, Z.H. Low-cost colorimetric reader and label-free strategy for user-friendly detection of nucleic acid amplification products. Sens. Actuators B Chem. 2021, 346, 130523. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Qi, Y.; Li, Z. A Portable, Cost-Effective and User-Friendly Instrument for Colorimetric Enzyme-Linked Immunosorbent Assay and Rapid Detection of Aflatoxin B1. Foods 2021, 10, 2483. https://doi.org/10.3390/foods10102483
Tang W, Qi Y, Li Z. A Portable, Cost-Effective and User-Friendly Instrument for Colorimetric Enzyme-Linked Immunosorbent Assay and Rapid Detection of Aflatoxin B1. Foods. 2021; 10(10):2483. https://doi.org/10.3390/foods10102483
Chicago/Turabian StyleTang, Wenzhi, Yangchun Qi, and Zhonghong Li. 2021. "A Portable, Cost-Effective and User-Friendly Instrument for Colorimetric Enzyme-Linked Immunosorbent Assay and Rapid Detection of Aflatoxin B1" Foods 10, no. 10: 2483. https://doi.org/10.3390/foods10102483
APA StyleTang, W., Qi, Y., & Li, Z. (2021). A Portable, Cost-Effective and User-Friendly Instrument for Colorimetric Enzyme-Linked Immunosorbent Assay and Rapid Detection of Aflatoxin B1. Foods, 10(10), 2483. https://doi.org/10.3390/foods10102483