Antiviral Properties of Polyphenols from Plants
Abstract
:1. Introduction
2. Polyphenol Effectiveness against Viral Infections
2.1. Influenza Viruses
2.2. Hepatitis Viruses
2.3. Herpes Virus
2.4. Epstein–Barr Virus
2.5. Rotavirus
2.6. Coronavirus
3. Mechanism of Antiviral Activity
4. Clinical Trials
5. Methods of Polyphenol Isolation
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
B-PAC | B-type proanthocyanidins |
CV-B3 | coxsackie virus type B-3 |
CC | cytotoxic concentration |
DENV | dengue virus |
DTMUV | duck Tembusu virus |
EC | effective concentration |
ECG | epicatechin gallate |
EGCG | epigallocatechin-3-gallate |
FCV | felinecalici virus |
HA | hemagglutinins |
HAV | hepatitis A virus |
HBV | hepatitis B virus |
HCV | hepatitis C virus |
HPLC | high performance liquid chromatography |
HPLC-DAD | high performance liquid chromatography—diode-array detection |
HSV-1 | herpes simplex virus 1 |
HSV-2 | herpes simplex virus 2 |
IAV | influenza virus A type |
IC | inhibitory concentration |
IBV | influenza virus B type |
ID | infective dose |
LC-MS | liquid chromatographs equipped with a mass detector |
MALDI-TOF-MS | matrix-assisted laser desorption/ionization—time-of-flight mass spectrometry |
MNV-1 | murine norovirus |
MPXV | monkeypox virus |
NA | neuraminidase |
NADES | natural deep eutectic solvents |
NMR | Nuclear Magnetic Resonance |
PA2 | proanthocyanidin A2 |
PAC-A | A-type proanthocyanidins |
PHWE | pressurized hot water extraction |
PLE | pressurized liquid extraction |
PRRS | porcine reproductive and respiratory syndrome |
RV | rhinovirus |
SARS | severe acute respiratory syndrome |
TF1 | theaflavin |
TF2 | theaflavin-3′-monogallate |
TF2a | theaflavin-3′-O-gallate |
TF2b | theaflavin-3′-gallate |
TF3 | theaflavin-3-3′-digallate |
TLC | thin layer chromatograph |
TMV | tobacco mosaic virus |
TPC | total phenolic content |
UPLC | ultra performance liquid chromatography |
UV-VIS | Ultraviolet–visible absorption |
VACV | vaccinia virus |
ZIKV | zika virus |
References
- Veeresham, C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 2012, 3, 200–201. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacology 2015, 4, 27. [Google Scholar]
- Giovinazzo, G.; Gerardi, C.; Uberti-Foppa, C.; Lopalco, L. Can natural polyphenols help in reducing cytokine storm in COVID-19 patients? Molecules 2020, 25, 5888. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, P.; Barooah, A.K. Tea Bioactive Modulate Innate Immunity: In Perception to COVID-19 Pandemic. Front. Immunol. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Besednova, N.N.; Andryukov, B.G.; Zaporozhets, T.S.; Kryzhanovsky, S.P.; Fedyanina, L.N.; Kuznetsova, T.A.; Zvyagintseva, T.N.; Shchelkanov, M.Y. Antiviral effects of polyphenols from marine algae. Biomedicines 2021, 9, 200. [Google Scholar] [CrossRef]
- Song, L.-G.; Xie, Q.-X.; Lao, H.-L.; Lv, Z.-Y. Human coronaviruses and therapeutic drug discovery. Infect. Dis. Poverty 2021, 10, 1–21. [Google Scholar] [CrossRef]
- Chojnacka, K.; Witek-Krowiak, A.; Skrzypczak, D.; Mikula, K.; Młynarz, P. Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus. J. Funct. Foods 2020, 73, 104146. [Google Scholar] [CrossRef]
- Ahmad, S.; Zahiruddin, S.; Parveen, B.; Basist, P.; Parveen, A.; Parveen, R.; Ahmad, M. Indian Medicinal Plants and Formulations and Their Potential Against COVID-19–Preclinical and Clinical Research. Front. Pharmacol. 2021, 11, 2470. [Google Scholar] [CrossRef]
- Kim, H.; Chung, M.S. Antiviral activities of mulberry (Morus alba) juice and seed against influenza viruses. Evid. Based Complement. Altern. Med. 2018, 2018, 2606583. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, J., II; Lee, I.; Lee, S.; Hwang, M.W.; Bae, J.Y.; Heo, J.; Kim, D.; Han, S.Z.; Park, M.S. Aronia melanocarpa and its components demonstrate antiviral activity against influenza viruses. Biochem. Biophys. Res. Commun. 2013, 440, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Ulomskiy, E.N.; Ivanova, A.V.; Gorbunov, E.B.; Esaulkova, I.L.; Slita, A.V.; Sinegubova, E.O.; Voinkov, E.K.; Drokin, R.A.; Butorin, I.I.; Gazizullina, E.R.; et al. Synthesis and biological evaluation of 6-nitro-1,2,4-triazoloazines containing polyphenol fragments possessing antioxidant and antiviral activity. Bioorganic Med. Chem. Lett. 2020, 30, 127216. [Google Scholar] [CrossRef]
- Sgarbanti, R.; Amatore, D.; Celestino, I.; Marcocci, M.; Fraternale, A.; Ciriolo, M.; Magnani, M.; Saladino, R.; Garaci, E.; Palamara, A.; et al. Intracellular Redox State as Target for Anti-Influenza Therapy: Are Antioxidants Always Effective? Curr. Top. Med. Chem. 2014, 14, 2529–2541. [Google Scholar] [CrossRef] [Green Version]
- Gramza-Michałowska, A.; Sidor, A.; Kulczyński, B. Berries as a potential anti-influenza factor—A review. J. Funct. Foods 2017, 37, 116–137. [Google Scholar] [CrossRef]
- Zakay-Rones, Z.; Thom, E.; Wollan, T.; Wadstein, J. Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. J. Int. Med. Res. 2004, 32, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Ikuta, K.; Hashimoto, K.; Kaneko, H.; Mori, S.; Ohashi, K.; Suzutani, T. Anti-viral and anti-bacterial activities of an extract of blackcurrants (Ribes nigrum L.). Microbiol. Immunol. 2012, 56, 805–809. [Google Scholar] [CrossRef]
- Sekizawa, H.; Ikuta, K.; Mizuta, K.; Takechi, S.; Suzutani, T. Relationship between polyphenol content and anti-influenza viral effects of berries. J. Sci. Food Agric. 2013, 93, 2239–2241. [Google Scholar] [CrossRef]
- Ryu, Y.B.; Jeong, H.J.; Yoon, S.Y.; Park, J.Y.; Kim, Y.M.; Park, S.J.; Rho, M.C.; Kim, S.J.; Lee, W.S. Influenza virus neuraminidase inhibitory activity of phlorotannins from the edible brown alga ecklonia cava. J. Agric. Food Chem. 2011, 59, 6467–6473. [Google Scholar] [CrossRef] [PubMed]
- Derksen, A.; Kühn, J.; Hafezi, W.; Sendker, J.; Ehrhardt, C.; Ludwig, S.; Hensel, A. Antiviral activity of hydroalcoholic extract from Eupatorium perfoliatum L. Against the attachment of influenza A virus. J. Ethnopharmacol. 2016, 188, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, A.; Ganapathy, R.; Huan, L.; Dunlap, J.R.; Webby, R.J.; Kotwal, G.J.; Sangster, M.Y. Influenza virus variation in susceptibility to inactivation by pomegranate polyphenols is determined by envelope glycoproteins. Antiviral Res. 2010, 88, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H. Naturally derived anti-hepatitis B virus agents and their mechanism of action. World J. Gastroenterol. 2016, 22, 188–204. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Sun, G.; Guo, W.; Huang, Y.; Sun, W.; Zhao, F.; Hu, K. Inhibition of hepatitis B virus replication by quercetin in human hepatoma cell lines. Virol. Sin. 2015, 30, 261. [Google Scholar] [CrossRef]
- Parvez, M.K.; Tabish Rehman, M.; Alam, P.; Al-Dosari, M.S.; Alqasoumi, S.I.; Alajmi, M.F. Plant-derived antiviral drugs as novel hepatitis B virus inhibitors: Cell culture and molecular docking study. Saudi Pharm. J. 2019, 27, 389–400. [Google Scholar] [CrossRef]
- Ciesek, S.; von Hahn, T.; Colpitts, C.C.; Schang, L.M.; Friesland, M.; Steinmann, J.; Manns, M.P.; Ott, M.; Wedemeyer, H.; Meuleman, P.; et al. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology 2011, 54, 1947–1955. [Google Scholar] [CrossRef]
- Calland, N.; Albecka, A.; Belouzard, S.; Wychowski, C.; Duverlie, G.; Descamps, V.; Hober, D.; Dubuisson, J.; Rouillé, Y.; Séron, K. (-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology 2012, 55, 720–729. [Google Scholar] [CrossRef]
- Chowdhury, P.; Sahuc, M.E.; Rouillé, Y.; Rivière, C.; Bonneau, N.; Vandeputte, A.; Brodin, P.; Goswami, M.; Bandyopadhyay, T.; Dubuisson, J.; et al. Theaflavins, polyphenols of black tea, inhibit entry of hepatitis C virus in cell culture. PLoS ONE 2018, 13, e0198226. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chen, R.; Hagedorn, C.H. Tannic acid inhibits hepatitis C virus entry into Huh7.5 cells. PLoS ONE 2015, 10, e0131358. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Li, L.X.; Liao, Q.J.; Liu, C.L.; Chen, X.L. Epigallocatechin gallate inhibits HBV DNA synthesis in a viral replication–inducible cell line. World J. Gastroenterol. 2011, 17, 1507–1514. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.Y.; Zhao, K.J.; Wang, J.B.; Ma, Z.J.; Xiao, X.H. Green tea polyphenol, epigallocatechin-3-gallate, possesses the antiviral activity necessary to fight against the hepatitis B virus replication in vitro. J. Zhejiang Univ. Sci. B 2014, 15, 533–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, M.; Saito, H.; Ikeda, M.; Hokari, R.; Kato, N.; Hibi, T.; Miura, S. An antioxidant resveratrol significantly enhanced replication of hepatitis C virus. World J. Gastroenterol. 2010, 16, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Li, Y.; Huang, C.; Ying, L.; Xue, J.; Wu, H.; Chen, Z.; Yang, Z. Resveratrol enhances HBV replication through activating Sirt1-PGC-1α-PPARα pathway. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Mailar, K.; Kim, M.I.; Park, M.; Kim, J.; Min, D.H.; Heo, T.-H.; Bae, S.K.; Choi, W.; Lee, C. Plant-Derived Purification, Chemical Synthesis, and In Vitro/In Vivo Evaluation of a Resveratrol Dimer, Viniferin, as an HCV Replication Inhibitor. Viruses 2019, 11, 890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesari, A.; Ghasemi, F.; Salarinia, R.; Biglari, H.; Hassan, A.T.M.; Abdoli, V.; Mirzaei, H. Effects of curcumin on NF-κB, AP-1, and Wnt/β-catenin signaling pathway in hepatitis B virus infection. J. Cell. Biochem. 2018, 119, 7898–7904. [Google Scholar] [CrossRef]
- Wei, Z.-Q.; Zhang, Y.-H.; Ke, C.-Z.; Chen, H.-X.; Ren, P.; He, Y.-L.; Hu, P.; Ma, D.-Q.; Luo, J.; Meng, Z.-J. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation. World J. Gastroenterol. 2017, 23, 6252–6260. [Google Scholar] [CrossRef]
- Denaro, M.; Smeriglio, A.; Barreca, D.; De Francesco, C.; Occhiuto, C.; Milano, G.; Trombetta, D. Antiviral activity of plants and their isolated bioactive compounds: An update. Phyther. Res. 2020, 34, 742–768. [Google Scholar] [CrossRef]
- Torky, Z.A.; Hossain, M.M. Pharmacological evaluation of the Hibiscus herbal extract against Herpes Simplex Virus-type 1 as an antiviral drug in vitro. Int. J. Virol. 2017, 13, 68–79. [Google Scholar] [CrossRef]
- Wu, C.Y.; Yu, Z.Y.; Chen, Y.C.; Hung, S.L. Effects of epigallocatechin-3-gallate and acyclovir on herpes simplex virus type 1 infection in oral epithelial cells. J. Formos. Med. Assoc. 2021. Available online: https://www.sciencedirect.com/science/article/pii/S0929664620306185 (accessed on 6 June 2021). [CrossRef]
- Musarra-Pizzo, M.; Pennisi, R.; Ben-Amor, I.; Smeriglio, A.; Mandalari, G.; Sciortino, M.T. In vitro anti-HSV-1 activity of polyphenol-rich extracts and pure polyphenol compounds derived from pistachios kernels (Pistacia vera L.). Plants 2020, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- El-Toumy, S.A.; Salib, J.Y.; El-Kashak, W.A.; Marty, C.; Bedoux, G.; Bourgougnon, N. Antiviral effect of polyphenol rich plant extracts on herpes simplex virus type 1. Food Sci. Hum. Wellness 2018, 7, 91–101. [Google Scholar] [CrossRef]
- Orłowski, P.; Kowalczyk, A.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Węgrzyn, A.; Grzesiak, J.; Celichowski, G.; Grobelny, J.; Eriksson, K.; Krzyzowska, M. Antiviral activity of tannic acid modified silver nanoparticles: Potential to activate immune response in herpes genitalis. Viruses 2018, 10, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Leo, A.; Arena, G.; Lacanna, E.; Oliviero, G.; Colavita, F.; Mattia, E. Resveratrol inhibits Epstein Barr Virus lytic cycle in Burkitt’s lymphoma cells by affecting multiple molecular targets. Antiviral Res. 2012, 96, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Colak, M.; Sarzhanova, S.; Yegin, Z.A.; Ozkurt, Z.N.; Fidan, I.; Bozdayi, G. Determination and Role of Epstein-Barr Virus in Patients With Lymphoproliferative Disorders. Clin. Lymphoma Myeloma Leuk. 2021, 21, e488–e492. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.-D.; Hegde, S.; Young, K.H.; Sullivan, R.; Rajesh, D.; Zhou, Y.; Jankowska-Gan, E.; Burlingham, W.J.; Sun, X.; Gulley, M.L.; et al. A New Model of Epstein-Barr Virus Infection Reveals an Important Role for Early Lytic Viral Protein Expression in the Development of Lymphomas. J. Virol. 2011, 85, 165–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasudevan, H.N.; Yom, S.S. Nasopharyngeal Carcinoma and Its Association with Epstein-Barr Virus. Hematol. Oncol. Clin. N. Am. 2021, 35, 963–971. [Google Scholar] [CrossRef]
- Lewandowska, H.; Kalinowska, M.; Lewandowski, W.; Stepkowski, T.M.; Brzóska, K. The role of natural polyphenols in cell signaling and cytoprotection against cancer development. J. Nutr. Biochem. 2016, 32, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, M.; Ingmer, H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents 2019, 53, 716–723. [Google Scholar] [CrossRef]
- Wu, C.C.; Fang, C.Y.; Hsu, H.Y.; Chen, Y.J.; Chou, S.P.; Huang, S.Y.; Cheng, Y.J.; Lin, S.F.; Chang, Y.; Tsai, C.H.; et al. Luteolin inhibits Epstein-Barr virus lytic reactivation by repressing the promoter activities of immediate-early genes. Antiviral Res. 2016, 132, 99–110. [Google Scholar] [CrossRef]
- Nomura, E.; Hosoda, A.; Morishita, H.; Murakami, A.; Koshimizu, K.; Ohigashi, H.; Taniguchi, H. Synthesis of Novel Polyphenols Consisted of Ferulic and Gallic Acids, and Their Inhibitory Effects on Phorbol Ester-Induced Epstein–Barr Virus Activation and Superoxide Generation. Bioorg. Med. Chem. 2002, 10, 1069–1075. [Google Scholar] [CrossRef]
- Liu, H.; Chen, H.; Liu, Z.; Le, Z.; Nie, T.; Qiao, D.; Su, Y.; Mai, H.; Chen, Y.; Liu, L. Therapeutic nanovaccines sensitize EBV-associated tumors to checkpoint blockade therapy. Biomaterials 2020, 255, 120158. [Google Scholar] [CrossRef]
- Flerlage, T.; Hayden, R.; Cross, S.J.; Dallas, R.; Srinivasan, A.; Tang, L.; Sun, Y.; Maron, G. Rotavirus infection in pediatric allogeneic hematopoietic cell transplant recipients: Clinical course and experience using nitazoxanide and enterally administered immunoglobulins. Pediatr. Infect. Dis. J. 2018, 37, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liao, D.; Zhou, G.; Zhu, Z.; Cui, Y.; Pu, R. Antiviral activities of resveratrol against rotavirus in vitro and in vivo. Phytomedicine 2020, 77, 153230. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.J.; Kim, H.H.; Ryu, Y.B.; Kim, J.H.; Jeong, H.J.; Lee, S.W.; Chang, J.S.; Cho, K.O.; Rho, M.C.; Park, S.J.; et al. In vitro anti-rotavirus activity of polyphenol compounds isolated from the roots of Glycyrrhiza uralensis. Bioorg. Med. Chem. 2010, 18, 7668–7674. [Google Scholar] [CrossRef]
- Cecílio, A.B.; Oliveira, P.D.C.; Caldas, S.; Campana, P.R.V.; Francisco, F.L.; Duarte, M.G.R.; Mendonça, L.D.A.M.; Almeida, V.L.D. Antiviral activity of Myracrodruon urundeuva against rotavirus. Rev. Bras. Farmacogn. 2016, 26, 197–202. [Google Scholar] [CrossRef]
- Téllez, M.A.; Téllez, A.N.; Vélez, F.; Ulloa, J.C. In vitro antiviral activity against rotavirus and astrovirus infection exerted by substances obtained from Achyrocline bogotensis (Kunth) DC. (Compositae). BMC Complement. Altern. Med. 2015, 15, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, H.M.; Lee, S.W.; Park, M.H.; Kim, M.H.; Ryu, Y.B.; Kim, M.S.; Kim, H.H.; Park, K.H.; Lee, W.S.; Park, S.J.; et al. Norkurarinol Inhibits Toll-Like Receptor 3 (TLR3)-Mediated Pro-inflammatory Signaling Pathway and Rotavirus Replication. J. Pharmacol. Sci. 2012, 118, 161–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seah, I.; Agrawal, R. Can the Coronavirus Disease 2019 (COVID-19) Affect the Eyes? A Review of Coronaviruses and Ocular Implications in Humans and Animals. Ocul. Immunol. Inflamm. 2020, 28, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Li, Z.; Yuan, K.; Qu, X.; Chen, J.; Wang, G.; Zhang, H.; Luo, H.; Zhu, L.; Jiang, P.; et al. Small Molecules Blocking the Entry of Severe Acute Respiratory Syndrome Coronavirus into Host Cells. J. Virol. 2004, 78, 11334–11339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tallei, T.E.; Tumilaar, S.G.; Niode, N.J.; Kepel, B.J.; Idroes, R.; Effendi, Y.; Sakib, S.A.; Emran, T. Bin Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study. Scientifica 2020, 2020, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Paraiso, I.L.; Revel, J.S.; Stevens, J.F. Potential use of polyphenols in the battle against COVID-19. Curr. Opin. Food Sci. 2020, 32, 149. [Google Scholar] [CrossRef]
- Eskier, D.; Karakülah, G.; Suner, A.; Oktay, Y. RdRp mutations are associated with SARS-CoV-2 genome evolution. PeerJ 2020, 8, e9587. [Google Scholar] [CrossRef]
- El-Missiry, M.A.; Fekri, A.; Kesar, L.A.; Othman, A.I. Polyphenols are potential nutritional adjuvants for targeting COVID-19. Phyther. Res. 2021, 35, 2879–2889. [Google Scholar] [CrossRef]
- Lin, S.C.; Ho, C.T.; Chuo, W.H.; Li, S.; Wang, T.T.; Lin, C.C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis. 2017, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Utomo, R.Y.; Meiyanto, E. Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection. Preprints 2020, 2020030214. Available online: https://www.preprints.org/manuscript/202003.0214/v1 (accessed on 12 June 2021). [CrossRef] [Green Version]
- Annunziata, G.; Sanduzzi Zamparelli, M.; Santoro, C.; Ciampaglia, R.; Stornaiuolo, M.; Tenore, G.C.; Sanduzzi, A.; Novellino, E. May Polyphenols Have a Role Against Coronavirus Infection? An Overview of in vitro Evidence. Front. Med. 2020, 7, 240. [Google Scholar] [CrossRef] [PubMed]
- Diniz, L.R.L.; Da Silva Maia Bezerra Filho, C.; Fielding, B.C.; De Sousa, D.P.; Gil, G. Natural Antioxidants: A Review of Studies on Human and Animal Coronavirus. Oxid. Med. Cell. Longev. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Muzio, L.L.; Bizzoca, M.E.; Ravagnan, G. New intriguing possibility for prevention of coronavirus pneumonitis: Natural purified polyphenols. Oral Dis. 2020, 1–5. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361353/ (accessed on 12 June 2021). [CrossRef]
- Mehany, T.; Khalifa, I.; Barakat, H.; Althwab, S.A.; Alharbi, Y.M.; El-Sohaimy, S. Polyphenols as promising biologically active substances for preventing SARS-CoV-2: A review with research evidence and underlying mechanisms. Food Biosci. 2021, 40, 100891. [Google Scholar] [CrossRef] [PubMed]
- Richart, S.M.; Li, Y.-L.; Mizushina, Y.; Chang, Y.-Y.; Chung, T.-Y.; Chen, G.-H.; Tzen, J.T.-C.; Shia, K.-S.; Hsu, W.-L. Synergic effect of curcumin and its structural analogue (Monoacetylcurcumin) on anti-influenza virus infection. J. Food Drug Anal. 2018, 26, 1015–1023. [Google Scholar] [CrossRef] [Green Version]
- Luganini, A.; Terlizzi, M.E.; Catucci, G.; Gilardi, G.; Maffei, M.E.; Gribaudo, G. The cranberry extract oximacro® exerts in vitro virucidal activity against influenza virus by interfering with hemagglutinin. Front. Microbiol. 2018, 9, 1826. [Google Scholar] [CrossRef]
- Lipson, S.M.; Karalis, G.; Karthikeyan, L.; Ozen, F.S.; Gordon, R.E.; Ponnala, S.; Bao, J.; Samarrai, W.; Wolfe, E. Mechanism of Anti-rotavirus Synergistic Activity by Epigallocatechin Gallate and a Proanthocyanidin-Containing Nutraceutical. Food Environ. Virol. 2017, 9, 434–443. [Google Scholar] [CrossRef]
- Nagai, E.; Iwai, M.; Koketsu, R.; Sogabe, R.; Morimoto, R.; Suzuki, Y.; Ohta, Y.; Okuno, Y.; Ohshima, A.; Enomoto, T.; et al. Inhibition of influenza virus replication by adlay tea. J. Sci. Food Agric. 2018, 98, 1899–1905. [Google Scholar] [CrossRef]
- Makau, J.N.; Watanabe, K.; Mohammed, M.M.D.; Nishida, N. Antiviral Activity of Peanut (Arachis hypogaea L.) Skin Extract Against Human Influenza Viruses. J. Med. Food 2018, 21, 777–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Chung, J.; Lee, S.H.; Yoon, J.H.; Kweon, D.H.; Chung, W.J. Tannic acid-functionalized HEPA filter materials for influenza virus capture. Sci. Rep. 2021, 11, 1–7. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, Q.; Chen, Y.; Duan, M.; Tian, G.; Deng, X.; Sun, Y.; Zhou, T.; Zhang, G.; Chen, W.; et al. Inhibition of proanthocyanidin A2 on porcine reproductive and respiratory syndrome virus replication in vitro. PLoS ONE 2018, 13, e0193309. [Google Scholar] [CrossRef] [PubMed]
- Medjeldi, S.; Bouslama, L.; Benabdallah, A.; Essid, R.; Haou, S.; Elkahoui, S. Biological activities, and phytocompounds of northwest Algeria Ajuga iva (L) extracts: Partial identification of the antibacterial fraction. Microb. Pathog. 2018, 121, 173–178. [Google Scholar] [CrossRef]
- D’angeli, F.; Malfa, G.A.; Garozzo, A.; Volti, G.L.; Genovese, C.; Stivala, A.; Nicolosi, D.; Attanasio, F.; Bellia, F.; Ronsisvalle, S.; et al. Antimicrobial, antioxidant, and cytotoxic activities of juglans regia l. Pellicle extract. Antibiotics 2021, 10, 159. [Google Scholar] [CrossRef]
- Lavoie, S.; Côté, I.; Pichette, A.; Gauthier, C.; Ouellet, M.; Nagau-Lavoie, F.; Mshvildadze, V.; Legault, J. Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis. BMC Complement. Altern. Med. 2017, 17, 1–12. [Google Scholar] [CrossRef]
- Kim, H.; Lim, C.Y.; Chung, M.S. Magnolia officinalis and Its Honokiol and Magnolol Constituents Inhibit Human Norovirus Surrogates. Foodborne Pathog. Dis. 2021, 18, 24–30. [Google Scholar] [CrossRef]
- Suručić, R.; Tubić, B.; Stojiljković, M.P.; Djuric, D.M.; Travar, M.; Grabež, M.; Šavikin, K.; Škrbić, R. Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization. Mol. Cell. Biochem. 2021, 476, 1179–1193. [Google Scholar] [CrossRef]
- Joshi, S.S.; Howell, A.B.; D’Souza, D.H. Antiviral effects of blueberry proanthocyanidins against Aichi virus. Food Microbiol. 2019, 82, 202–208. [Google Scholar] [CrossRef]
- Sarwar, M.W.; Riaz, A.; Dilshad, S.M.R.; Al-Qahtani, A.; Nawaz-Ul-Rehman, M.S.; Mubin, M. Structure activity relationship (SAR) and quantitative structure activity relationship (QSAR) studies showed plant flavonoids as potential inhibitors of dengue NS2B-NS3 protease. BMC Struct. Biol. 2018, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Deng, J.; Joshi, S.; Liu, P.; Zhang, C.; Yu, Y.; Zhang, R.; Fan, D.; Yang, H.; D’Souza, D.H. Monomeric catechin and dimeric procyanidin B2 against human norovirus surrogates and their physicochemical interactions. Food Microbiol. 2018, 76, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Rauf, W.; Fazal-e-Habib, M.R.; Iqbal, M. Screening and identification of bioactive compounds from citrus against non-structural protein 3 protease of hepatitis C virus genotype 3a by fluorescence resonance energy transfer assay and mass spectrometry. World J. Hepatol. 2020, 12, 976–992. [Google Scholar] [CrossRef]
- Bisignano, C.; Mandalari, G.; Smeriglio, A.; Trombetta, D.; Pizzo, M.M.; Pennisi, R.; Sciortino, M.T. Almond skin extracts abrogate HSV-1 replication by blocking virus binding to the cell. Viruses 2017, 9, 178. [Google Scholar] [CrossRef]
- Grienke, U.; Mair, C.E.; Kirchmair, J.; Schmidtke, M.; Rollinger, J.M. Discovery of Bioactive Natural Products for the Treatment of Acute Respiratory Infections–An Integrated Approach. Planta Med. 2018, 84, 684–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Yang, L.; Huang, Y.; Chen, Y.; Sang, H.; Duan, W.; Yang, J. Isocorilagin, isolated from Canarium album (Lour.) Raeusch, as a potent neuraminidase inhibitor against influenza A virus. Biochem. Biophys. Res. Commun. 2020, 523, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Roque, Y.; Ayora-Talavera, G.; Rincón-Rosales, R.; Gutiérrez-Miceli, F.A.; Meza-Gordillo, R.; Winkler, R.; Gamboa-Becerra, R.; Ayora-Talavera, T.D.R.; Ruiz-Valdiviezo, V.M. The flavonoid fraction from Rhoeo discolor leaves acting as antiviral against influenza A virus. Rec. Nat. Prod. 2017, 11, 532–546. [Google Scholar] [CrossRef]
- He, Z.; Lian, W.; Liu, J.; Zheng, R.; Xu, H.; Du, G.; Liu, A. Isolation, structural characterization and neuraminidase inhibitory activities of polyphenolic constituents from Flos caryophylli. Phytochem. Lett. 2017, 19, 160–167. [Google Scholar] [CrossRef]
- Sekizawa, H.; Ikuta, K.; Ohnishi-Kameyama, M.; Nishiyama, K.; Suzutani, T. Identification of the components in a vaccinium oldhamii extract showing inhibitory activity against influenza virus adsorption. Foods 2019, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Morán-Santibañez, K.; Peña-Hernández, M.A.; Cruz-Suárez, L.E.; Ricque-Marie, D.; Skouta, R.; Vasquez, A.H.; Rodríguez-Padilla, C.; Trejo-Avila, L.M. Virucidal and synergistic activity of polyphenol-rich extracts of seaweeds against measles virus. Viruses 2018, 10, 465. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.; Howell, A.B.; D’Souza, D.H. Blueberry proanthocyanidins against human norovirus surrogates in model foods and under simulated gastric conditions. Food Microbiol. 2017, 63, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sk, M.F.; Sonawane, A.; Kar, P.; Sadhukhan, S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: An in-silico analysis. J. Biomol. Struct. Dyn. 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Liu, C.; Yang, J.; Niu, D.; Dong, M.; Yang, G.; Li, X.; Hu, Q. Alatains A and B, unique hetero-dimeric polyphenols from Cassia alata and their anti-tobacco mosaic virus activity. Fitoterapia 2020, 147, 104763. [Google Scholar] [CrossRef] [PubMed]
- Abdelkhalek, A.; Salem, M.Z.M.; Kordy, A.M.; Salem, A.Z.M.; Behiry, S.I. Antiviral, antifungal, and insecticidal activities of Eucalyptus bark extract: HPLC analysis of polyphenolic compounds. Microb. Pathog. 2020, 147, 104383. [Google Scholar] [CrossRef]
- Cao, S.; Realegeno, S.; Pant, A.; Satheshkumar, P.S.; Yang, Z. Suppression of poxvirus replication by resveratrol. Front. Microbiol. 2017, 8, 2196. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Calvo, Á.; de Oya, N.J.; Martín-Acebes, M.A.; Garcia-Moruno, E.; Saiz, J.C. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses West Nile Virus, Zika Virus, and Dengue Virus. Front. Microbiol. 2017, 8, 1314. [Google Scholar] [CrossRef]
- Gaudry, A.; Bos, S.; Viranaicken, W.; Roche, M.; Krejbich-Trotot, P.; Gadea, G.; Desprès, P.; El-Kalamouni, C. The flavonoid isoquercitrin precludes initiation of Zika virus infection in human cells. Int. J. Mol. Sci. 2018, 19, 1093. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.C.; Zhang, X.; Lehman, C.W.; Pan, H.C.; Wen, Y.; Chen, S.Y. A natural botanical product, resveratrol, effectively suppresses vesicular stomatitis virus infection in vitro. Plants 2021, 10, 1231. [Google Scholar] [CrossRef]
- Kandeil, A.; Mostafa, A.; Kutkat, O.; Moatasim, Y.; Al-karmalawy, A.A.; Rashad, A.A.; Kayed, A.E.; Kayed, A.E.; El-Shesheny, R.; Kayali, G.; et al. Bioactive polyphenolic compounds showing strong antiviral activities against severe acute respiratory syndrome coronavirus 2. Pathogens 2021, 10, 758. [Google Scholar] [CrossRef]
- Zhang, T.; Lo, C.Y.; Xiao, M.; Cheng, L.; Pun Mok, C.K.; Shaw, P.C. Anti-influenza virus phytochemicals from Radix Paeoniae Alba and characterization of their neuraminidase inhibitory activities. J. Ethnopharmacol. 2020, 253, 112671. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Choudhury, S.; Barua, S.; Khandelwal, N.; Kumar, N.; Shukla, A.; Garg, S.K. Polyalthia longifolia leaves methanolic extract targets entry and budding of viruses-an in vitro experimental study against paramyxoviruses. J. Ethnopharmacol. 2020, 248, 112279. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.G.; Lee, H.; Kim, Y.S.; Hwang, Y.H.; Oh, Y.C.; Lee, B.; Moon, K.M.; Cho, W.K.; Ma, J.Y. Aloe vera and its Components Inhibit Influenza A Virus-Induced Autophagy and Replication. Am. J. Chin. Med. 2019, 47, 1307–1324. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Correa, A.I.; Quintero-Gil, D.C.; Diaz-Castillo, F.; Quiñones, W.; Robledo, S.M.; Martinez-Gutierrez, M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement. Altern. Med. 2019, 19, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, D.; Jia, Y.; He, L.; Li, J.; Yu, C.; Liao, C.; Yu, Z.; Zhang, C. Research Note: Anti-inflammatory effects and antiviral activities of baicalein and chlorogenic acid against infectious bursal disease virus in embryonic eggs. Poult. Sci. 2021, 100, 100987. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Gu, X.; Zhang, M.; Lv, X.; Zhang, C.; Li, J.; Hu, Z.; Wu, Q.; Zhang, R.; Wei, J.; et al. Epigallocatechin-3-gallate exhibits antiviral effects against the duck Tembusu virus via blocking virus entry and upregulating type I interferons. Poult. Sci. 2021, 100, 100989. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yao, W.; Si, L.; Hou, J.; Wang, J.; Xu, Z.; Li, W.; Chen, J.; Li, R.; Li, P.; et al. Chinese herbal extract Su-duxing had potent inhibitory effects on both wild-type and entecavir-resistant hepatitis B virus (HBV) in vitro and effectively suppressed HBV replication in mouse model. Antiviral Res. 2018, 155, 39–47. [Google Scholar] [CrossRef]
- Xu, M.J.; Liu, B.J.; Wang, C.I.; Wang, G.H.; Tian, Y.; Wang, S.H.; Li, J.; Li, P.Y.; Zhang, R.H.; Wei, D.; et al. Epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor and effectively alleviates acute lung injury induced by H9N2 swine influenza virus. Int. Immunopharmacol. 2017, 52, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Yugandhar, P.; Kumar, K.K.; Neeraja, P.; Savithramma, N. Isolation, characterization and in silico docking studies of synergistic estrogen receptor α anticancer polyphenols from Syzygium alternifolium (Wt.) walp. J. Intercult. Ethnopharmacol. 2017, 6, 296–310. [Google Scholar] [CrossRef]
- Esatbeyoglu, T.; Rodríguez-Werner, M.; Winterhalter, P. Fractionation and isolation of polyphenols from Aronia melanocarpa by countercurrent and membrane chromatography. Eur. Food Res. Technol. 2017, 243, 1261–1275. [Google Scholar] [CrossRef]
- Sun, S.; Huang, S.; Shi, Y.; Shao, Y.; Qiu, J.; Sedjoah, R.C.A.A.; Yan, Z.; Ding, L.; Zou, D.; Xin, Z. Extraction, isolation, characterization and antimicrobial activities of non-extractable polyphenols from pomegranate peel. Food Chem. 2021, 351, 129232. [Google Scholar] [CrossRef]
- Yathzamiry, V.G.D.; Cecilia, E.G.S.; Antonio, M.C.J.; Daniel, N.F.S.; Carolina, F.G.A.; Alberto, A.V.J.; Raúl, R.H. Isolation of Polyphenols from Soursop (Annona muricata L.) Leaves Using Green Chemistry Techniques and their Anticancer Effect. Brazilian Arch. Biol. Technol. 2021, 64, 1–15. [Google Scholar] [CrossRef]
- Mansour, A.; Celano, R.; Mencherini, T.; Picerno, P.; Piccinelli, A.L.; Foudil-Cherif, Y.; Csupor, D.; Rahili, G.; Yahi, N.; Nabavi, S.M.; et al. A new cineol derivative, polyphenols and norterpenoids from Saharan myrtle tea (Myrtus nivellei): Isolation, structure determination, quantitative determination and antioxidant activity. Fitoterapia 2017, 119, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Torres, C.A.; Sturla, M.A.; Romero, A.M.; Judis, M.A. Bioguided isolation of antimicrobial polyphenols from Cuspidaria convoluta leaves and their synergistic effect with antibiotics. Asian Pac. J. Trop. Biomed. 2019, 9, 434–442. [Google Scholar] [CrossRef]
- Rahman, S.; Helleur, R.; MacQuarrie, S.; Papari, S.; Hawboldt, K. Upgrading and isolation of low molecular weight compounds from bark and softwood bio-oils through vacuum distillation. Sep. Purif. Technol. 2018, 194, 123–129. [Google Scholar] [CrossRef]
- Farías-Campomanes, A.M.; Rostagno, M.A.; Coaquira-Quispe, J.J.; Meireles, M.A.A. Supercritical fluid extraction of polyphenols from lees: Overall extraction curve, kinetic data and composition of the extracts. Bioresour. Bioprocess. 2015, 2, 45. [Google Scholar] [CrossRef] [Green Version]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.-H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Peng, S.; Peng, M.; Wang, C. Isolation of polyphenol compounds from olive waste and inhibition of their derivatives for α-glucosidase and α-amylase. Nat. Prod. Res. 2020, 34, 2398–2402. [Google Scholar] [CrossRef]
- Barrientos, R.E.; Simirgiotis, M.J.; Palacios, J.; Paredes, A.; Bórquez, J.; Bravo, A.; Cifuentes, F. Chemical fingerprinting, isolation and characterization of polyphenol compounds from Heliotropium taltalense (Phil.) I.M. Johnst and its endothelium-dependent vascular relaxation effect in rat aorta. Molecules 2020, 25, 3105. [Google Scholar] [CrossRef]
- Mieres-Castro, D.; Schmeda-Hirschmann, G.; Theoduloz, C.; Gómez-Alonso, S.; Pérez-Navarro, J.; Márquez, K.; Jiménez-Aspee, F. Antioxidant activity and the isolation of polyphenols and new iridoids from Chilean Gaultheria phillyreifolia and G. poeppigii berries. Food Chem. 2019, 291, 167–179. [Google Scholar] [CrossRef]
- Ma, Y.; Shang, Y.; Liu, F.; Zhang, W.; Wang, C.; Zhu, D. Convenient isolation of strictinin-rich tea polyphenol from Chinese green tea extract by zirconium phosphate. J. Food Drug Anal. 2018, 26, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Dahmoune, F.; Nayak, B.; Moussi, K.; Remini, H.; Madani, K. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem. 2015, 166, 585–595. [Google Scholar] [CrossRef]
- Corazza, G.O.; Bilibio, D.; Zanella, O.; Nunes, A.L.; Bender, J.P.; Carniel, N.; dos Santos, P.P.; Priamo, W.L. Pressurized liquid extraction of polyphenols from Goldenberry: Influence on antioxidant activity and chemical composition. Food Bioprod. Process. 2018, 112, 63–68. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.R.; Bulnes, P.; Zúñiga, M.C.; Pérez-Jiménez, J.; Torres, J.L.; Mateos-Martín, M.L.; Agosin, E.; Pérez-Correa, J.R. Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation. J. Agric. Food Chem. 2013, 61, 6929–6936. [Google Scholar] [CrossRef] [PubMed]
- Periasamy. Manikandan, A..; Akila, S.; Prabu, K. Production of Polyphenol from Phyllanthus Emblica using Soxhlet Extraction Process. Int. J. Recent Technol. Eng. 2019, 8, 5010–5012. [Google Scholar] [CrossRef]
- Socas-Rodríguez, B.; Torres-Cornejo, M.V.; Álvarez-Rivera, G.; Mendiola, J.A. Deep Eutectic Solvents for the Extraction of Bioactive Compounds from Natural Sources and Agricultural By-Products. Appl. Sci. 2021, 11, 4897. [Google Scholar] [CrossRef]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents–Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as a New Extraction Media for Phenolic Metabolites in Carthamus tinctorius L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef]
- Wan Mahmood, W.M.A.; Lorwirachsutee, A.; Theodoropoulos, C.; Gonzalez-Miquel, M. Polyol-Based Deep Eutectic Solvents for Extraction of Natural Polyphenolic Antioxidants from Chlorella vulgaris. ACS Sustain. Chem. Eng. 2019, 7, 5018–5026. [Google Scholar] [CrossRef]
Material | Polyphenols | Virus | Dose | Mechanism | References |
---|---|---|---|---|---|
mulberry (Morus alba) juice | caffeic acid, chlorogenic acid, p-coumaric acid, cyanidin-3-glucoside, cyanidin-3-rutinoside, 3,4-dihydroxybenzoic acid, gallic acid, rutin | IAV, IBV variety (A/Brisbane/59/2007- [H1N1, BR59], A/Korea/01/2009—[H1N1, KR01], A/Brisbane/10/2007—[H3N2, BR10], B/Florida/4/2006 [FL04]) | mulberry juice at 2% and 4% exhibited 1.3 log inhibition on FL04 virus in the pretreatment and cotreatment of the virus | antiviral activity at the initial stage of the virus inhibits the attachment of viral surface protein to its cellular receptor or due to internalization of cell surface receptors from virions and prevents virus adsorption to host cells | [11] |
black tea | theaflavin (TF1), theaflavin-3′-monogallate(TF2), theaflavin-3-3′-digallate(TF3) | HCV | EC50—17.89 μM (10.09 μg/mL), (TF1), CC50—442.8 μM (250 μg/mL), (TF1), EC50—4.08 μM (2.92 μg/mL), (TF2), CC50—348.8 μM (250 μg/mL), (TF2), EC50—2.02 μM (1.75 μg/mL), (TF3), CC50—287.7 μM (250 μg/mL), (TF3) | polyphenols prevent cell surface attachment or receptor binding by acting on viral particles and thus inhibiting the cell-to-cell spread | [25] |
Euphorbia cooperi (euphorbiaceae), Morus alba (moraceae) | 1.catechin-7-gallate, 2. gallic acid, 3. kaempferol 3-O--(6′′-O-galloyl)-glucopyranoside, 4. quercetin3-O--(6′′-O-galloyl)-glucopyranoside, 5. curcumin, 6. quercetin, 7. kaempferol | HSV-1 | CC50—[μg/mL]: 1. 43.2 ± 2.3, 2. 49.8 ± 0.4, 3. 124.1 ± 1.2, 4. 175.6 ± 0.9, 5. 49.8 ± 0.4, 6. 78.1 ± 0.8, 7. 76.1 ± 0.2 | -the mechanism inhibits viral replication or viral genome synthesis. HSV-1 employs glycosaminoglycan (GAG) as initial attachment receptors during infection of their host cell, so polyphenols target HSV-1 glyco-proteins -this type of interaction prevents the virus from connecting with binding receptors and cell surface | [33] |
plant-based polyphenols | tannic acid with modified silver nanoparticles (TA-AgNPs) | HSV-2 | 5 μg/mouse TA-AgNPs sized 33 nm applied upon the mucosal tissue | -the mechanism is based on two properties of used compounds -one is connected with tannic acid that interferes with the viral adsorption mechanism - second is based on the ability of silver nanoparticles that can block the attachment of the virus and its entry -nanoparticles can also induct antiviral cytokine and chemokine production -efficiency of TA-AgNPs of the inactivation of the virus might depend on the proline content in HSV glycoproteins | [34] |
spice and common food colorant, turmeric | curcumin (Cur), monoacetylcurcumin (MAC) | IAV variety (H1N1) | 30 μM in MDCK cells for single compound, 15 μM mixture of polyphenols (7.5 μM Cur and 7.5 μM MAC) | -both polyphenols indicate the various mechanisms of inhibition. Cur and MAC reduced viral NA activity, but MAC did not block HA activity, compared to Cur -MAC dampened phosphorylation, which is essential for efficient IAV propagation -replication of IAV in cells is most likely connected with PI3K/AKT activation, which is suppressed by MAC -both polyphenols inhibit IAV separately but together give better results | [68] |
cranberry (Vaccinium macrocarpon aiton) extracts | A-type proanthocyanidins (A-PAC), dimers and trimers | IAV, IBV | based on the type of fraction: CC50 ≥ 200 μg/mL (1,2,5), CC50—149.7 ± 3.1 μg/mL (3), CC50—136.4 ± 2.4 μg/mL (4), IC50—50 μg/mL (1,2,5), IC50—5.02 ± 1.2 μg/mL (3 IAV), IC50—3.24 ± 1.4 μg/mL (4 IAV), IC50—6.02 ± 1.2 μg/mL (3 IBV), IC50—4.07 ±1.8 μg/mL (4 IBV) | -PAC-A2 achieves the inhibitory effect of polyphenol extract against influenza viruses interacting with the ectodomain of viral HA and the formation of three hydrogen bonds Phe99, Asn210, and Trp234 of HA, which leads to extensive cross-linking of the IV glycoprotein -those properties affect the HA protein band by reducing its intensity | [69] |
green tea, cranberry plant | EGCG, the nutraceutical CystiCranÒ-40 (containing 40%), A-PAC, B-PAC) | coliphage T4II (phage T4),the rotavirus strain SA-11(RTV) | mixture of 60 μg/mL (EGCG) and 100 μg/mL(C-40) or 30 μg/mL (EGCG) and 25 μg/mL (C-40) | the combination of those polyphenols is most likely based on blocking or altering viral ligands or antigenic determinants, which reduce the binding ability of the virus | [70] |
adlay tea | the present publication concludes two options for antiviral activity of the given extract, either the polyphenols are non-flavonoid phenols and/or the antiviral activity is elicited by other types of compounds | IAV, IBV variety (A/PR/8/34, H1N1, H3N2 and B) | IC50—2.11–5.13 mg/mL (IAV) IC50—2.91–4.61 mg/mL (IBV) CC50 ≥ 40 mg/mL | antiviral activity most likely manifests itself in the inhibition of virus adsorption to the cell and its replication, where tea also affects binding to cells directly | [71] |
Arachis hypogaea (L.) skin, ethanol extract | extract most probably consist of phenolic acids (coumaric, ferulic, chlorogenic, p-hydrobenzoic acids), phenolics (catechins, A-PACB-PAC), and stilbenes (resveratrol), where resveratrol is the main compound | IAV, IBV | IC50—1.0–1.5 μg/mL, CC50—5.4–9.1l μg/mL | -the mechanism is probably based on inhibition of replication or its early stages, where a combination of an extract with oseltamivir and amantadine prove to be more effective against the influenza virus -this phenomenon is most probably due to targeting different phases of replication | [72] |
plant-based extract | tannic acid (TA) | IAV variety (H1N1) | HEPA filter treated with 5 mg/mL of TA for 2 h at 22 oC | linking TA molecules with HA, which are present on the influenza virus’ surface, allows their interaction and subsequent inhibition of viral proteins NA and M2 in the inner part of the virus | [73] |
tea polyphenols found in fruits, nuts and seeds | PA2 | PRRS | EC50—2.2–3.2 μg/mL, IC50—2.5–3.2 μg/mL (Marc-145 cells), CC50—126.5 (Marc-145 cells) and 63.9 (PAM cells) μg/mL | inhibition consists of blocking viral entry and progeny virion release, which was obtained from reducing gene expressions of cytokines (TNF-α, IFN-α, IL-1β, IL-6) | [74] |
Ajuga iva (L.) aerial part extracts | total phenolic content (TPC) 28.3 ±1.12, flavonoids content (FC) 10.5 ± 0.83, tannins content (TC) 7.2 ± 0.31 | coxsackie virus type B-3 (CV-B3) | IC50—0.43 ± 0.03 mg/mL, AC50—182 ± 12 μg/mL CC50—2810 ± 36 μg/mL | - | [75] |
Juglans regia, pellicle extract (WPE) | protocatechuic acid, gallic acid, ellagic acid, quercetin, myricetin, chlorogenic acid, kaempferolarabinoside, avicularin, (+)-procyanidin B2, rutin | HSV-1, HSV-2 | ID50—10 µg/mL (HSV-1) ID50—8 µg/mL (HSV-2) | - | [76] |
Cornus canadensis | 1,6-di-O-galloyl-β-D-glucopyranose, 1,2,3-tri-O-galloyl-β-D-glucopyranose, 1,2,6-tri-O-galloyl-β-D-glucopyranose, 2,3,6-tetra-O-galloyl-β-D-glucopyranos, 2,3,4,6-penta-O-galloyl-β- D-glucopyranose, tellimagrandin I, tellimagrandin II, ethyl gallate, caffeic acid, astragalin, isoquercetin, trifolin, kaempferol 3-O-β-D-xylopyranoside, reinutrin, juglanin, avicularin, juglalin, benzyl 2-O-β-glucopyranosyl-2,6-hydroxybenzoate, byzantionoside B | HSV-1 | direct mode EC50—11–17 μg/mL (extract) EC50—2.6 ± 0.1 μM (tellimagrandin I) EC50—7 ± 4 μM (2,3,6-tetra-O-gal-loyl-β-D-glucopyranose) EC50—10 ± 2 μM (2,3,4,6-penta-O-galloyl-β-D-glucopyranose) EC50—7 ± 1 μM (tellimagrandin II) absorption mode EC50—9 μg/mL (extract) EC50—5.0 ± 0.2μM (tellimagrandin I) EC50—11 ± 3 μM (2,3,6-tetra-O-gal-loyl-β-D-glucopyranose) EC50—12 ± 4 μM (2,3,4,6-penta-O-galloyl-β-D-glucopyranose) EC50—11 ± 3 μM (tellimagrandin II) | - | [77] |
magnolia officinalis | honokiol, magnolol | murine norovirus (MNV-1), feline Calicivirus | 5 mg/mL added to food products such as milk or plum, orange, apple juice | - | [78] |
pomegranate peel extract | ellagic acid, punicalin, gallic acid, punicalagin | SARS-CoV-2 | - | -polyphenols combined with the amino acids contained in S-glycoprotein, ACE2, furin, TMPRSS2 using mainly hydrogen bonds -in punicalagin and punicalin, there are 3-4 hydrogen bonds, and also Pi-alkyl, Pi-Pi bonds are present, which stabilizes the complex | [79] |
blueberry | B-PAC | aichi virus | 5 mg/mL | various mechanisms are considered in the treatment of host cells with B-PAC, including binding: -host cells receptors -virus particles and blocking attachment -host cell and preventing host cell entry connected to blocking/damaging the above host cell or viral receptor, which prevents viral entry | [80] |
extracted plants | type of the flavonoids | dengue virus (DENV) | - | -inhibition of this virus is caused by the disruption of the NS2B-NS3 protein complex, which has a negative effect on replication -each of the present flavonoids interacts with different amino acids of viral protein, which changes the process mechanism: | [81] |
Euphorbia lunulate | quercetin 3-O-(2′′,3′′-digalloyl)-β-D-galactopyranoside | Gly 87, Val 146, Asn 167, within the active site | |||
Sedum sarmentosum | quercetin 3-O-α-(6′′-caffeoylglucosyl-β-1,2-rhamnoside) | Lys 74, Ile 165 within the inactive site | |||
Passiflora tripartite | schaftoside | an arene–arene link with amino acid Trp 83 | |||
Myrica rubra | myricetin | Trp 83 Gly 87 and Val 146 | |||
Anethum graveolens | quercetin 3-sulfate | an arene cationic link with Lys 74 | |||
Citrus lumia, Cyclopia, Subternata | eriocitrin | Lys 74 | |||
Richilia catigua | catiguanin B | a cationic arene interaction with Lys 74 and a hydrogen bond donation with Trp 83 | |||
Lepisorus contortus | 4′,5,7-trihydroxy-3-methoxyflavone-7-O-α-L-arabinofuranosyl(1→6)-β-D-glucopyranoside | Asn 167, Val 147, Trp 89 | |||
Scutellaria baicalensis | wogonin 7-O-β-D-glucuronide | Gly 87, Trp 83 | |||
Silybum marianum | silychristin | a cationic arene link with Lys 74 and a hydrogen bond with Trp 83 | |||
plant-based polyphenols | catechin, procyanidin B2 (PB2) | felinecalici virus (FCV F9), MNV-1 | 0.5 and 1 mg/mL for both compounds, where time was the main factor deciding about inhibition of the viruses | -inhibition is achieved by PB2 that changes the structure of the P domain of VLPs -PB2 binds the P domain, where electrostatic interactions play a dominant role while PB2 significantly alters tertiary but not secondary structures of VLPs | [82] |
grapefruit mesocarp extract | hesperidin | HCV genotype 3a | IC50—23.32 µmol/L | the mechanism is based on HCV NS3 protease fused with co-factor NS4A, which then binds hesperidin with the catalytic site residues of the NS4A-NS3 protease domain | [83] |
almond skin extracts | EC, eriodictyol quercetin, catechin protocatechuic acid, kaempferol p-hydroxybenzoic acid chlorogenic acid vanillic acid isorhamnetin naringenin trans-p-coumaric acid eryodictiol-7-O-glucoside isorhamnetin-3-O-glucoside isorhamnetin-3-O-rutinoside naringenin-7-O-glucoside kaempferol-3-O-glucoside kaempferol-3-O-rutinoside quercetin-3-O-glucoside quercetin-3-O-galactoside quercetin-3-O-rutinoside | HSV-1 | 0.4 mg/mL extracts concentration (90% decrease of viral titer) | NS acts on the HSV-1 lytic cycle in that it blocks virion entry into the cells, i.e., the polyphenols bind to cell receptors of the virus, preventing them from entering the cell | [84] |
141 diverse plant and fungal species belonging to 66 different families, with asteraceae (10%), lamiaceae (10%), apiaceae (6%), and fabaceae (4%) | 1. rutamari, 2. piperine, 3. piperylin, 4. 1-[(2E,4E,8E)-9-(1,3-benzodioxol-5-yl)-1-oxo-2,4,8-nona-trienyl]-pyrrolidine, 5. piperoleine A, 6. dehydropipernonaline, 7. pipernonaline, 8. chabamide, 9. ganoderol B | Hong Kong/68 (HK/68), rhinovirus RV-A2, CV-B3 | extracts: IC50—50 μg/mL (HK/68) IC50—20 μg/mL (CV-B3) IC50—11 μg/mL (RV-A2) pure compound: 1. CC50—4.7 μM (MDCK cells) and 4.6 μM (HeLa cells), 2. CC50—50 μM (HeLa cells), 3. CC50 ≥ 100 μM (HeLa cells), 4. CC50 ≥ 100 μM (HeLa cells), 5. CC50—25 μM (HeLa cells), 6. CC50—34 μM (HeLa cells), 7. CC50—21 μM (HeLa cells), 8. CC50—11 μM (HeLa cells), 9. CC50 ≥ 100 μM (MDCK cells) and >100 μM (HeLa cells), 1. IC50—2.7 μM (HK/68 in MDCK cells) and 5.1 μM (CV-B3 in HeLa cells), 2. IC50—41 μM (RV-A2 in HeLa cells), 3. IC50—51 μM (CV-B3 in HeLa cells) and 79 μM (RV-A2 in HeLa cells), 4. IC50—61 μM (CV-B3 in HeLa cells), 5. IC50—22 μM (CV-B3 in HeLa cells), 6. IC50—24 μM (CV-B3 in HeLa cells), 7. IC50—32 μM (CV-B3 in HeLa cells), 8. IC50—9.1 μM (CV-B3 in HeLa cells), 9. IC50—17 μM (HK/68 in MDCK cells) and 65—μM (RV-A2 in HeLa cells), | the paper indicates the properties of ganoderol B to inhibit RV coat protein, which is connected to its antiviral activity | [85] |
Canarium album | isocorilagin | IAV variety (H1N1) | IC50—9.19 ± 1.99 µM A/Puerto Rico/8/34 (H1N1) IC50—23.72 ± 2.51 µM A/Aichi/2/68 (H3N2) IC50—4.64 ± 3.01 µM for NA-H274Y (H1N1) | isocorilagin inhibiting NA activity in a dose-dependent manner via residues Arg118, Glu119, Arg156, and Glu276. Interaction with NA mainly through hydrogen bonds and van der Waals forces | [86] |
rhoeo discolor leaves and their methanol extract | luteolin-7-glucoside 15% kaempferol 75% isoquercetin 5% quercetin 2% rutin 3% | IAV variety (H1N1) | CC50—0.90 ± 0.01 μg/mL IC50—0.30 ± 0.02 μg/mL | -the inhibition of the influenza virus is accomplished through the suppression of the HA - MF1 fraction acts at the HA level and thus prevents the virus from binding to the cell surface receptors | [87] |
flos caryophylli | rhamnetin-3-O-b-D-glucuronide-600-methyl ester, rhamnazin-3-O-b-D-glucuronide- 600-methyl ester, kaempferol-3-O-b-D-glucuronide-600-methyl ester, isorhamnetin-3-O-b-D-glucuronide-600-methyl ester, rhamnetin-3-O-b-D-glucopyranoside, quercetin 3-O-b-D-glucuronide-600-methyl ester, quercetin 3-O-b-D-glucuronide, isoquercitrin, isorhamnetin-3-O-b-D-glucopyranoside, rhamnazin-3-O-b-D-glucopyranoside, 1,2,3-tri-O-galloylglucose, casuarinin, tellimagrandins I, 1,3-Di-O-galloyl-4,6-HHDP-glucose, casuarictin, eugeniin, 1,2,3,6-tetra-O-galloylglucose, isobiflori, biflori | IAV variety (H1N1) | IC50—8.4 to 94.1 μM EC50—1.5–84.7 μM CC50—374.3–1266.9 μM | inhibition of the key surface proteins of the virus, which is NA, is affected by a group of polyphenols | [88] |
Vaccinium oldhamii ethanol extracts | procyanidin B2,O-hexosides, quercetin-3-O-rhamnosidequercetin-O-pentoside-O rhamnoside | IAV, IBV | IC50—38 µg/mL (30% extract) IC50—22 µg/mL (40% extract) IC50—65 µg/mL (50% extract) CC50—251 µg/mL (30% extract) CC50—160 µg/mL (40% extract) CC50—78 µg/mL (50% extract) | ferulic acid and its derivatives bind NA and inhibit the initial stage of IFV infection, where quercetin and rhamnoside suppress IFV replication in cells | [89] |
Solieria filiformis, Ecklonia arborea | solieria filiformis: kaempferide, kaempferol-3-O-rutinoside, quercetin 3-O-malonylglucoside, demethoxycentaureidin7-O-rutinoside, quercetin 3-(6-O-acetyl-beta-glucoside) ecklonia arborea: phlorofucofuroeckol-B, formononetin, apigenin 7-O-glucoside | measles virus | solieria filiformis: CC50 ≥ 1500 μg/mL IC50 -0.4 ± 0.11 μg/mL ecklonia arborea: CC50 ≥ 1500 μg/mL IC50—2.6 ± 0.28 μg/mL | inhibition is based on the deactivation of the virus virion, which prevents it from absorbing and penetrating the host cell | [90] |
blueberry | B-PAC | MNV-1, FCV-F9 | 5 mg/mL in simulated intestinal fluid | -in used nutritional models, milk has decreased antiviral activity because of the presence of complex matrices containing lipids -the publication clarifies that the presence of proteolytic enzymes did not affect the inhibition of those viruses | [91] |
plant based polyphenols | EGCG, TF1, theaflavin -3′-O-gallate (TF2a), theaflavin-3′-gallate (TF2b), TF3, hesperidin, quercetagetin, myricetin | SARS-CoV-2 | maximum tolerated dose for humanEGCG—0.441 (log mg/kg/day) TF3—0.438 (log mg/kg/day) TF2b—0.438 (log mg/kg/day) TF2a—0.439 (log mg/kg/day) | the complex is formed by van der Waals bonds, electrostatic interactions, nonpolar solvation free energy, where polyphenols bind to the virus through RNA-dependent RNA polymerase (RdRp) | [92] |
Cassia alata | alatains A and B | tobacco mosaic virus (TMV) | IC50—18.8 µM (A type) IC50—11.4 µM (B type) | the presence of C-14—C-5 linkage between a chromone moiety and an isocoumarin moiety in the studied polyphenols | [93] |
eucalyptus bark extract | benzoic acid, quinol, salicylic acid, myricetin, rutin | TMV | 100 μg/mL | the direct inhibition of virus replication as well as by simultaneous activation of the host innate immune response and inducing SAR against the virus | [94] |
plant-based polyphenol | resveratrol | vaccinia virus (VACV), monkeypox virus (MPXV) | CC50—176.88 ± 17.44 μM (VACV HFF cells),IC50 -3.51 ± 1.22 μM (VACV HFF cells), CC50—157.75 ± 23.66 μM (VACV Hela cells), IC50—4.72 ± 2.34 μM (VACV Hela cells), IC50—12.41 μM (MPXV-WA), IC50—15.23 μM (MPXV-ROC) | polyphenol affects genome replication as well as post-replicative gene expression, where resveratrol affects the cellular function of VACV | [95] |
plants and natural products based on polyphenols | delphinidin (D), EGCG | west Nile virus (WNV), zika virus (ZIKV), DENV | antiviral activity is dose-dependent with values ranging from 1–10 μM, the best results were obtained with 10 μM | inhibition mechanism is based around entry steps of the virus life cycle, where polyphenols contain trihydroxyphenyl group at R2, which may interact with the function of proteins at multiple binding sites | [96] |
fruits and vegetables (plant-based polyphenols) | isoquercitrin (quercetin-3-O-glucoside or Q3G) | ZIKV | IC50—15.5 ± 2.3 μM (A549), CC50—551.2 ± 43.2 μM (A549), IC50—14.0 ± 3.8 μM (Huh-7), CC50—326.8 ± 45.7 μM (Huh-7), IC50—9.7 ± 1.2 μM (SH-SY5Y), CC50—582.2 ± 41.4 μM (SH-SY5Y), | polyphenol prevents the internalization of virus particles into the host cell, most likely by clathrin-mediated endocytosis pathway involving Axl/Gas6 as entry factors | [97] |
honey, tea, red wine | pinocembrin | ZIKV | IC50—17.4 µM | polyphenol inhibits the replication cycle of the virus as well as RNA production and envelope protein synthesis, where those actions happen in the post-entry stages of the infection | [98] |
Polyphenol | Virus Type | Activity Mechanism | Refs. |
---|---|---|---|
quercetin | SARS-CoV-2 | interaction with Spike occurs between amino acid Thr 445, Ile 446; as for main protease it binds to Thr 26 superior main protease docking result compared to spike docking, better inhibitory effect on replication cycle of the virus rather than penetration/adsorption cycle | [16] |
resveratrol | Epstein–Barr virus | decreasing levels of reactive oxygen species, blocking protein synthesis and inhibiting virus-induced activation of transcription factors, which affects replication of the individual virus | [42] |
rotavirus | inhibition of the replication in the Caco-2 cell line | [52] | |
vesicular stomatitis virus | suppression of the spread of the virus by interaction with the active sites of caspase-3 and -7 | [99] | |
curcumin | SARS-CoV-2 | entry into host cells is also blocked by blocking the enzyme ACE2; curcumin has a high affinity for ACE2 ligands | [60] |
influenza virus | reduction of viral NA activity and blocking HA activity | [69] | |
SARS-CoV-2 | inhibition due to interaction with Mpro receptor of SARS-CoV-2, which occurs by binding with amino acid Thr26, His41, Gln189 | [100] | |
EGCG | HCV | suppressing by blocking virus entry via viral envelope proteins and inhibiting cell-to-cell transmission | [25] |
HBV | inhibition of DNA synthesis during virus replication | [29] | |
the duck Tembusu virus (DTMUV) | reduction of the viral infection in BHK-21 cells, expressions of the viral E protein and virus titers. EGCG affects the adsorption step of the infection and replication stage of the virus in BHK-21 cells | [106] | |
chlorogenic acid | infectious bursal disease virus | inhibiting histamine production, NF-kB activation, which affects the production of the pro-inflammatory cytokines TNF-a and IL-1b | [105] |
HBV | inhibiting DNA of the virus by binding to HepG2.2.15 and HepG2.A64 | [107] | |
catechin | influenza A virus | binding to functional sites PHE47A and LEU43A, which inhibits M2 viral mRNA synthesis as well as M2 protein expression | [103] |
dengue virus | interaction with NS5 protein, by binding to amino acids Asn609, Asp663, His798 | [104] | |
gallic acid | influenza A virus | inhibition of replication of the virus, by binding to Arg152 of neuraminidase protein | [101] |
paramyxoviruses | affects replication cycle of the virus by inhibiting ribonucleotide reductase enzyme | [102] |
Material | Pretreatment | Polyphenol Isolation | Time | Polyphenol Determination | References |
---|---|---|---|---|---|
soursop leaves | - | water and ethanol/water (70:30 v/v) extraction | 10–20 min | HPLC | [112] |
olive waste | - | ultrasound-assisted enzyme catalyzed hydrolysis | - | 1H NMR and 13C NMR | [118] |
Heliotropium taltalense | methanol extraction in an ultrasonic bath | 1 h | UPLC | [119] | |
maritime pine | removing lipophilic compunds with a petroleum ether/ethyl acetate (50:50 v/v) mixture | ethanol/water (85:15 v/v) extraction | 2 h | LC-MS and NMR | [108] |
Cuspidaria convoluta | - | methanol maceration | 24 h | UV-VIS and HPLC-MS/MS | [114] |
Gaultheria phillyreifolia and G. poeppigii berries | - | methanol/formic acid (99:1 v/v) extraction | - | HPLC | [120] |
green tea | - | ethanol/water (70:10, v/v) extraction in ultrasonic cleaner | 1 h | HPLC and LC-MS | [121] |
Aronia melanocarpa | defatting with n-hexane and with dichloromethane | methanol/acetic acid (19:1, v/v) extraction with stirring | 8 h | HPLC | [110] |
Saharan myrtle tea | - | methanol/water (80:20, v/v) extraction | 3 ∙ 24 h | UPLC | [113] |
Syzygium alternifolium | removing lipophilic compunds with a dichloromethane | methanol/water (80:20, v/v) or acetone/water (80:20 v/v) extraction with sonification | 15 min | UV-VIS | [109] |
pomegranate peels | removing of extractable polyphenols using ethyl acetate | non-extractable polyphenols obtained via acid hydrolysis (6M HCl) | 2 h | TLC, CC, NMR, MALDI-TOF-MS | [111] |
grape processing lees | - | supercritical fluid extraction (SFE) with 90% of supercritical carbon dioxide and 10% (w/w) of ethanol | 10 min | TLC and HPLC | [116] |
Myrtus communis L. leaves | - | extraction with aqueous ethanol with assistance of microwaves | 30–90 s | Folin–Ciocalteu colorimetric method | [122] |
goldenberry | - | ethanol/water solution (70:30, v/v) pressurized liquid extraction (PLE) | 10–60 min | HPLC-DAD | [123] |
grape pomace | - | pressurized hot water extraction (PHWE) | 5 or 30 min | MALDI-TOF-MS | [124] |
Phyllanthus Emblica | - | soxlet extraction with ethanol/water (7:3, v/v) | 30 min | Folin–Ciocalteu colorimetric method | [125] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chojnacka, K.; Skrzypczak, D.; Izydorczyk, G.; Mikula, K.; Szopa, D.; Witek-Krowiak, A. Antiviral Properties of Polyphenols from Plants. Foods 2021, 10, 2277. https://doi.org/10.3390/foods10102277
Chojnacka K, Skrzypczak D, Izydorczyk G, Mikula K, Szopa D, Witek-Krowiak A. Antiviral Properties of Polyphenols from Plants. Foods. 2021; 10(10):2277. https://doi.org/10.3390/foods10102277
Chicago/Turabian StyleChojnacka, Katarzyna, Dawid Skrzypczak, Grzegorz Izydorczyk, Katarzyna Mikula, Daniel Szopa, and Anna Witek-Krowiak. 2021. "Antiviral Properties of Polyphenols from Plants" Foods 10, no. 10: 2277. https://doi.org/10.3390/foods10102277
APA StyleChojnacka, K., Skrzypczak, D., Izydorczyk, G., Mikula, K., Szopa, D., & Witek-Krowiak, A. (2021). Antiviral Properties of Polyphenols from Plants. Foods, 10(10), 2277. https://doi.org/10.3390/foods10102277