Community Formation as a Byproduct of a Recommendation System: A Simulation Model for Bubble Formation in Social Media
<p>Community detection algorithm with a tailored example with half positive values of opinions and half with negative values. (<b>a</b>) Linkage mechanism: as we can see we have two community (red and blue) formed by a few other groups connecting users. (<b>b</b>) Distribution of jumps: in this graph the distance between opinions of users or group of users is reported, as we can see largest jump could be used as an indicator of presence of a community.</p> "> Figure 2
<p>(<b>a</b>) Time evolution of the community indicator for a simulation with <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> </mrow> </semantics></math> 40,000. The unit of time corresponds to the sending/receiving of one message, and the time scale (number of messages sent) is in unit of <math display="inline"><semantics> <msup> <mn>10</mn> <mn>2</mn> </msup> </semantics></math>. (<b>b</b>) Dependence of the maximum jump indicator on the threshold <math display="inline"><semantics> <mi>τ</mi> </semantics></math> in a system without evolution (<math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>). The other parameters are <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> </mrow> </semantics></math> 10,000.</p> "> Figure 3
<p>Dendrograms of relations between users. Distance between clusters is reported as difference between height. Value of parameters are: <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> </mrow> </semantics></math> 20,000. (<b>a</b>) Here, we can see user overlap, or how big differences are between opinions of single users, while in (<b>b</b>) we can see opinion overlap. No evident “jump” is seen, which is reasonable since users are randomly generated and selection threshold (<math display="inline"><semantics> <mi>τ</mi> </semantics></math>) is zero.</p> "> Figure 4
<p>Community detection with <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> </mrow> </semantics></math> 20,000. (<b>a</b>) user overlap, (<b>b</b>) opinion overlap. As we can see an higher threshold causes the appearance of a “jump” in coalescence of clusters, but this is an effect due to statistics, as explained in text.</p> "> Figure 5
<p>Community detection with <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> </mrow> </semantics></math> 10,000. (<b>a</b>) Initial overlap between users, (<b>b</b>) overlap between opinions, (<b>c</b>) final user overlap after letting system evolve. A nonzero value of <math display="inline"><semantics> <mi>ε</mi> </semantics></math> in an evolving system completely separates population.</p> "> Figure 6
<p>Simulation with: <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> </mrow> </semantics></math> 10,000. Largest jump in dendrogram as a function of <math display="inline"><semantics> <mi>ε</mi> </semantics></math>. We can note that as soon as <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>></mo> <mn>0</mn> </mrow> </semantics></math> a strong sign of community formation appear both in opinions and in final factors of users. Community structure weakens a bit by increasing <math display="inline"><semantics> <mi>ε</mi> </semantics></math> since in this case users form more numerous but smaller communities.</p> "> Figure 7
<p>Histograms of replica simulations made starting from same set of random users, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> repetitions and <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> </mrow> </semantics></math> 20,000. For each of these simulations, we varied number of users and number of internal factors (opinions). (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math>. On x-axes, there is distance between users in replica 1 and same users in other other replicas.</p> ">
Abstract
:1. Introduction
2. The Model
2.1. Recommender Systems
2.2. The Procedure
2.3. Community Detection
3. Results
3.1. No Factor Evolution
3.2. Evolution of Factors
3.3. Replica Breaking
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sindermann, C.; Cooper, A.; Montag, C. A short review on susceptibility to falling for fake political news. Curr. Opin. Psychol. 2020, 36, 44–48. [Google Scholar] [CrossRef]
- Xu, C.; Li, J.; Abdelzaher, T.F.; Ji, H.; Szymanski, B.K.; Dellaverson, J. The Paradox of Information Access: On Modeling Social-Media-Induced Polarization. arXiv 2020, arXiv:2004.01106. [Google Scholar]
- Patel, B.; Desai, P.; Panchal, U. Methods of recommender system: A review. In Proceedings of the 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 17–18 March 2017. [Google Scholar] [CrossRef]
- Berman, R.; Katona, Z. Curation Algorithms and Filter Bubbles in Social Networks. Mark. Sci. 2020, 39, 296–316. [Google Scholar] [CrossRef]
- Kahneman, D. Thinking, Fast and Slow; Farrar, Straus and Giroux: New York, NY, USA, 2011. [Google Scholar]
- Pariser, E. The Filter Bubble: What the Internet Is Hiding from You; Penguin Press: New York, NY, USA, 2011. [Google Scholar]
- Bingbing, T.; Tianlong, G.; Yan, L. Research on Consumers’ Response to Personalized Recommendation Avoidance in B2C E-business under Filter Bubble Phenomenon. In Proceedings of the 2019 International Conference on E-Business and E-Commerce Engineering, Bali, Indonesia, 21–23 December 2019; Available online: https://dl.acm.org/doi/abs/10.1145/3385061.3385068 (accessed on 16 November 2021).
- Cinelli, M.; Morales, G.D.F.; Galeazzi, A.; Quattrociocchi, W.; Starnini, M. The echo chamber effect on social media. Proc. Natl. Acad. Sci. USA 2021, 118, e2023301118. [Google Scholar] [CrossRef]
- Sasahara, K.; Chen, W.; Peng, H.; Ciampaglia, G.L.; Flammini, A.; Menczer, F. Social influence and unfollowing accelerate the emergence of echo chambers. J. Comput. Soc. Sci. 2020, 4, 381–402. [Google Scholar] [CrossRef]
- O’Hara, K.; Stevens, D. Echo Chambers and Online Radicalism: Assessing the Internet’s Complicity in Violent Extremism. Policy Internet 2015, 7, 401–422. [Google Scholar] [CrossRef]
- Bruns, A. Filter bubble. Internet Policy Rev. 2019, 8, 4. [Google Scholar] [CrossRef]
- Bozdag, E.; van den Hoven, J. Breaking the filter bubble: Democracy and design. Ethics Inf. Technol. 2015, 17, 249–265. [Google Scholar] [CrossRef] [Green Version]
- Irakleous, G. Algorithmic Culture and Filter Bubble: The Case of YouTube’s Recommendation System. Bachelor’s Thesis, Ktisis Cyprus University of Technology, Limassol, Cyprus, 2020. Available online: https://ktisis.cut.ac.cy/handle/10488/18479 (accessed on 16 November 2021).
- Lunardi, G.M.; Machado, G.M.; Maran, V.; de Oliveira, J.P.M. A metric for Filter Bubble measurement in recommender algorithms considering the news domain. Appl. Soft Comput. 2020, 97, 106771. [Google Scholar] [CrossRef]
- Valdez, A.C.; Ziefle, M. Human Factors in the Age of Algorithms. Understanding the Human-in-the-loop Using Agent-Based Modeling. In Social Computing and Social Media. Technologies and Analytics; Springer International Publishing: New York, NY, USA, 2018; pp. 357–371. [Google Scholar] [CrossRef]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef] [Green Version]
- Bagnoli, F.; Berrones, A.; Franci, F. De gustibus disputandum (forecasting opinions by knowledge networks). Phys. A Stat. Mech. Its Appl. 2004, 332, 509–518. [Google Scholar] [CrossRef] [Green Version]
- Minsky, M.; Papert, S.A. Perceptrons: An introduction to Computational Geometry; MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Thurstone, L.L. Multiple factor analysis. Psychol. Rev. 1931, 38, 406–427. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Bandalos, D.L. Measurement Theory and Applications for the Social Sciences; Guilford Publications: New York, NY, USA, 2018. [Google Scholar]
- Thurstone, L.L. The vectors of mind. Psychol. Rev. 1934, 41, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Maslov, S.; Zhang, Y.C. Extracting Hidden Information from Knowledge Networks. Phys. Rev. Lett. 2001, 87, 248701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blattner, M.; Zhang, Y.C.; Maslov, S. Exploring an opinion network for taste prediction: An empirical study. Phys. A Stat. Mech. Its Appl. 2007, 373, 753–758. [Google Scholar] [CrossRef] [Green Version]
- Deffuant, G.; Neau, D.; Amblard, F.; Weisbuch, G. Mixing beliefs among interacting agents. Adv. Complex Syst. 2000, 03, 87–98. [Google Scholar] [CrossRef]
- Hegselmann, R.; Krause, U. Opinion dynamics and bounded confidence models, analysis, and simulation. J. Artif. Soc. Soc. Simul. 2002, 5, 3. [Google Scholar]
- Sznajd-Weron, K.; Sznajd, J. Opinion Evolution in Closed Community. Int. J. Mod. Phys. C 2000, 11, 1157–1165. [Google Scholar] [CrossRef] [Green Version]
- Maia, H.; Ferreira, S.; Martins, M. Adaptive network approach for emergence of societal bubbles. Phys. A Stat. Mech. Its Appl. 2021, 572, 125588. [Google Scholar] [CrossRef]
- Geschke, D.; Lorenz, J.; Holtz, P. The triple-filter bubble: Using agent-based modelling to test a meta-theoretical framework for the emergence of filter bubbles and echo chambers. Br. J. Soc. Psychol. 2018, 58, 129–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottron, T.; Schwagereit, F. The Impact of the Filter Bubble—A Simulation Based Framework for Measuring Personalisation Macro Effects in Online Communities. arXiv 2016, arXiv:cs.SI/1612.06551. [Google Scholar]
- Vicente, R.; Martins, A.C.R.; Caticha, N. Opinion dynamics of learning agents: Does seeking consensus lead to disagreement? J. Stat. Mech. Theory Exp. 2009, 2009, P03015. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagnoli, F.; de Bonfioli Cavalcabo’, G.; Casu, B.; Guazzini, A. Community Formation as a Byproduct of a Recommendation System: A Simulation Model for Bubble Formation in Social Media. Future Internet 2021, 13, 296. https://doi.org/10.3390/fi13110296
Bagnoli F, de Bonfioli Cavalcabo’ G, Casu B, Guazzini A. Community Formation as a Byproduct of a Recommendation System: A Simulation Model for Bubble Formation in Social Media. Future Internet. 2021; 13(11):296. https://doi.org/10.3390/fi13110296
Chicago/Turabian StyleBagnoli, Franco, Guido de Bonfioli Cavalcabo’, Banedetto Casu, and Andrea Guazzini. 2021. "Community Formation as a Byproduct of a Recommendation System: A Simulation Model for Bubble Formation in Social Media" Future Internet 13, no. 11: 296. https://doi.org/10.3390/fi13110296
APA StyleBagnoli, F., de Bonfioli Cavalcabo’, G., Casu, B., & Guazzini, A. (2021). Community Formation as a Byproduct of a Recommendation System: A Simulation Model for Bubble Formation in Social Media. Future Internet, 13(11), 296. https://doi.org/10.3390/fi13110296