Operation Scheduling Optimization for Microgrids Considering Coordination of Their Components
<p>Example of a generalized microgrid model. CG, controllable generation system; ESS, energy storage system; CL, controllable load; VREGs, variable renewable energy-based generation systems.</p> "> Figure 2
<p>(<b>a</b>) Forecasted net load; (<b>b</b>) electricity price.</p> "> Figure 3
<p>(<b>a</b>) Operation schedule for forecasted net load in Case 1; (<b>b</b>) state-of-charge (SOC) level in Case 1.</p> "> Figure 4
<p>(<b>a</b>) Operation schedule for forecasted net load in Case 2; (<b>b</b>) SOC level in Case 2.</p> "> Figure 5
<p>(<b>a</b>) Operation schedule for forecasted net load in Case 3; (<b>b</b>) SOC level in Case 3.</p> ">
Abstract
:1. Introduction
2. Problem Framework
2.1. Overview of Target Problem
2.2. Formulation of Target Problem
- Balance of power supply and demand
- State duration for CGs
- Ramp rate for CGs
- Maximum and minimum outputs for CGs
- State for ESSs
- Maximum and minimum outputs for ESSs
- State for CLs
- Maximum consumption for CLs
3. Solution Method
3.1. Overview of Solution Method
3.2. Application of Quadratic Programming
3.3. Application of Binary Particle Swarm Optimization
4. Numerical Simulations
4.1. Numerical Conditions
- Case 1
- Operation schedule without the reserve margin.
- Case 2
- Operation schedule considering the conventional reserve margin that compensates deviation within 5% of the net load.
- Case 3
- Operation schedule based on the proposed framework.
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Office of Electricity Delivery and Energy Reliability. DOE Microgrid Workshop Report. Available online: https://www.energy.gov/sites/prod/files/2012%20Microgrid%20Workshop%20Report%2009102012.pdf (accessed on 31 May 2019).
- Ton, D.T.; Smith, M.A. The U.S. Department of Energy’s Microgrid Initiative. Electr. J. 2012, 25, 84–94. [Google Scholar] [CrossRef]
- Bevrani, H.; Francois, B.; Ise, T. Microgrid Dynamics and Control; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Hatziargyriou, N.; Asano, H.; Iravani, R.; Marnay, C. Microgrids for Distributed Generation. IEEE Power Energy Mag. 2007, 133, 144–149. [Google Scholar]
- Investigating R&D Committee on advanced power system. Current Status of Advanced Power Systems including Microgrid and Smartgrid. IEEJ Tech. Rep. 2011, 1229. Available online: https://www.bookpark.ne.jp/cm/ieej/detail.asp?content_id=IEEJ-GH1229-PRT (accessed on 24 October 2019).
- New Energy and Industrial Technology Development Organization. Case Studies of Smart Community Demonstration Project. Available online: http://www.nedo.go.jp/english/reports_20130222.html (accessed on 31 May 2019).
- Choi, Y.J.; Choi, I.S.; Lee, H.J.; Chae, W.K. Operational Experience of Microgrids. In Smart Grid Handbook, 3 Volume Set; Liu, C.C., McAuthur, S., Lee, S.J., Eds.; Wiley: Hoboken, NJ, USA, 2016; Volume 3, pp. 1213–1234. [Google Scholar]
- Chowdhury, D.; Hassan, A.S.M.K.; Khan, M.Z.R. Scalable DC Microgrid Architecture with Phase Shifted Full Bridge Converter Based Power Management Unit. In Proceedings of the 10th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 20–22 December 2018; pp. 22–25. [Google Scholar]
- Hassan, A.S.M.K.; Chowdhury, D.; Khan, M.Z.R. Scalable DC Microgrid Architecture with a One-Way Communication Based Control Interface. In Proceedings of the 10th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 20–22 December 2018; pp. 265–268. [Google Scholar]
- Kerr, R.H.; Scheidt, J.L.; Fontana, A.J.; Wiley, J.K. Unit Commitment. IEEE Trans. Power A Syst. 1996, PAS-85, 417–421. [Google Scholar] [CrossRef]
- Sen, S.; Kothari, D.P. Optimal Thermal Generating Unit Commitment: A Review. Int. J. Electr. Power Energy Syst. 1998, 20, 443–451. [Google Scholar] [CrossRef]
- Hobbs, B.F.; Rothkopf, M.H.; O′Neill, R.P.; Chao, H.P. The Next Generation of Electric Power Unit Commitment Models; Springer: New York City, NY, USA, 2001. [Google Scholar]
- Padhy, N.P. Unit Commitment—A Bibliographical Survey. IEEE Trans. Power Syst. 2004, 19, 1196–1205. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Tung, N.S.; Kamboj, V. Unit Commitment in Power System: A Review. Int. J. Power Eng. 2012, 6, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, B.; Das, S.; Sikri, S.; Kothari, D.P. A Solution to the Unit Commitment Problem—A Review. Front. Energy 2013, 7, 223–236. [Google Scholar] [CrossRef]
- Zheng, Q.P.; Wang, J.; Liu, A.L. Stochastic Optimization for Unit Commitment—A Review. IEEE Trans. Power Syst. 2015, 30, 1913–1924. [Google Scholar] [CrossRef]
- Cohen, A.I.; Yoshimura, M. A branch-and-Bound Algorithm for Unit Commitment. IEEE Trans. Power A Syst. 1983, PAS-102, 444–451. [Google Scholar] [CrossRef]
- Chen, C.L.; Wang, S.C. Branch-and-Bound Scheduling for Thermal Generating Units. IEEE Trans. Energy Convers. 1993, 8, 184–189. [Google Scholar] [CrossRef]
- Snyder, W.L.; Powell, H.D.; Raiburn, J.C. Dynamic Programming Approach to Unit Commitment. IEEE Trans. Power Syst. 1987, 2, 339–348. [Google Scholar] [CrossRef]
- Ouyang, Z.; Shahidehpour, S.M. An Intelligent Dynamic Programming for Unit Commitment Application. IEEE Trans. Power Syst. 1991, 6, 1203–1209. [Google Scholar] [CrossRef]
- Juste, K.A.; Kita, H.; Tanaka, E.; Hasegawa, J. An Evolutionary Programming Solution to the Unit Commitment Problem. IEEE Trans. Power Syst. 1990, 14, 1452–1459. [Google Scholar] [CrossRef]
- Kazarlis, S.A.; Bakirtzis, A.G.; Petridis, V. A Genetic Algorithm Solution to the Unit Commitment Problem. IEEE Trans. Power Syst. 1996, 11, 83–92. [Google Scholar] [CrossRef]
- Mantawy, A.H.; Abdel-Magid, Y.L.; Selim, S.Z. A Simulated Annealing Algorithm for Unit Commitment. IEEE Trans. Power Syst. 1998, 13, 197–204. [Google Scholar] [CrossRef]
- Simopoulos, D.N.; Kavatza, S.D.; Vournas, C.D. Unit Commitment by an Enhanced Simulated Annealing Algorithms. IEEE Trans. Power Syst. 2006, 21, 68–76. [Google Scholar] [CrossRef]
- Rajan, C.C.A.; Mohan, M.R. An Evolutionary programming-based Tabu Search Method for Solving the Unit Commitment Problem. IEEE Trans. Power Syst. 2004, 19, 577–585. [Google Scholar] [CrossRef]
- Takano, H.; Zhang, P.; Murata, J.; Hashiguchim, T.; Goda, T.; Iizaka, T.; Nakanishi, Y. A determination method for the optimal operation of controllable generators in micro grids that copes with unstable outputs of renewable energy generation. Electr. Eng. Jpn. 2015, 190, 56–65. [Google Scholar] [CrossRef]
- Hayashi, Y.; Miyamoto, H.; Matsuki, J.; Iizuka, T.; Azuma, H. Online Optimization Method for Operation of Generators in Micro Grid. IEEJ Trans. PE 2008, 128, 388–396. (In Japanese) [Google Scholar] [CrossRef]
- Jeong, Y.W.; Park, J.B. A New Quantum-Inspired Binary PSO: Application to Unit Commitment Problem for Power Systems. IEEE Trans. Power Syst. 2010, 25, 1486–1495. [Google Scholar] [CrossRef]
- Lu, B.; Shahidehpour, M. Short-Term Scheduling of Battery in a Grid-Connected PV/Battery System. IEEE Trans. Power Syst. 2005, 20, 1053–1061. [Google Scholar] [CrossRef]
- Palma-Behnke, R.; Benavides, C.; Lanas, F.; Severino, B.; Reyes, L.; Llanos, J.; Saez, D. A Microgrid Energy Management System Based on the Rolling Horizon Strategy. IEEE Trans. Smart Grid. 2013, 4, 996–1006. [Google Scholar] [CrossRef]
- Li, N.; Uckun, C.; Constantinescu, E.M.; Birge, J.R.; Hedman, K.W.; Botterud, A. Flexible Operation of Batteries in Power System Scheduling with Renewable Energy. IEEE Trans. Sustain. Energy 2016, 7, 685–696. [Google Scholar] [CrossRef]
- Hammati, R.; Saboori, H. Short-Term Bulk Energy Storage Scheduling for Load Leveling in Unit Commitment: Modeling, Optimization, and Sensitivity Analysis. J. Adv. Res. 2016, 7, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Soe, T.Z.; Takano, H.; Shiomi, R.; Taoka, H. Determination method for optimal cooperative operation plan of microgrids by providing alternatives for microgrid operators. J. Int. Counc. Electr. Eng. 2018, 8, 103–110. [Google Scholar] [CrossRef]
- Clerc, M. Particle Swarm Optimization; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Lee, S.; Soak, S.; Oh, S.; Pedryczm, W.; Jeon, M. Modified binary particle swarm optimization. Prog. Nat. Sci. 2008, 18, 1161–1166. [Google Scholar] [CrossRef]
- Takano, H.; Nagaki, Y.; Murata, J.; Iizaka, T.; Ishibashi, T.; Katsuno, T. A study on supply and demand planning for Power Producer-Suppliers utilizing output of megawatt solar plants. J. Int. Counc. Electr. Eng. 2016, 6, 102–109. [Google Scholar] [CrossRef]
1 | 12,000.0 | 3800.0 | 1.2 | 3000.0 | 20.0 | 4.0 |
2 | 7800.0 | 3100.0 | 1.8 | 1000.0 | 16.0 | 3.2 |
3 | 2400.0 | 2500.0 | 2.8 | 500.0 | 12.0 | 2.4 |
1.8 | –1.8 | 10.4 | 2.6 | –1.5 | 9.6 | 2.4 |
Case | Cost for Forecasted Net Load (#) | Expected Cost (#) |
---|---|---|
1 | 1,921,509.5 | 2,101,022.6 |
2 | 1,929,108.8 | 2,051,418.4 |
3 | 1,960,789.9 | 1,960,832.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takano, H.; Goto, R.; Soe, T.Z.; Tuyen, N.D.; Asano, H. Operation Scheduling Optimization for Microgrids Considering Coordination of Their Components. Future Internet 2019, 11, 223. https://doi.org/10.3390/fi11110223
Takano H, Goto R, Soe TZ, Tuyen ND, Asano H. Operation Scheduling Optimization for Microgrids Considering Coordination of Their Components. Future Internet. 2019; 11(11):223. https://doi.org/10.3390/fi11110223
Chicago/Turabian StyleTakano, Hirotaka, Ryota Goto, Thin Zar Soe, Nguyen Duc Tuyen, and Hiroshi Asano. 2019. "Operation Scheduling Optimization for Microgrids Considering Coordination of Their Components" Future Internet 11, no. 11: 223. https://doi.org/10.3390/fi11110223
APA StyleTakano, H., Goto, R., Soe, T. Z., Tuyen, N. D., & Asano, H. (2019). Operation Scheduling Optimization for Microgrids Considering Coordination of Their Components. Future Internet, 11(11), 223. https://doi.org/10.3390/fi11110223