An Innovative Approach to Surface Deformation Estimation in Forest Road and Trail Networks Using Unmanned Aerial Vehicle Real-Time Kinematic-Derived Data for Monitoring and Maintenance
<p>The study area (Source: Siafali Evangelia 2023).</p> "> Figure 2
<p>Photos of the study area: (<b>a</b>,<b>b</b>) aspects of the examined trail, (<b>c</b>) typical landscape of the study area, and (<b>d</b>) lake Mavrobara (Source: Siafali Evangelia 2023).</p> "> Figure 3
<p>Study equipment: (<b>a</b>) Sensefly eBee X UAV with the white arrow indicating the position of photogrammetry cameras, (<b>b</b>) the S.O.D.A. 3D drone photogrammetry camera, and (<b>c</b>) graphical presentation of data collection with the specific equipment (AgEagle Aerial Systems, Wichita, KA, USA).</p> "> Figure 4
<p>Processing stages in the Pix4D Mapper software.</p> "> Figure 5
<p>(<b>a</b>) Two-dimensional keypoint matches and (<b>b</b>) orthomosaic overlap. Red and yellow regions indicate low overlap, while green areas represent an overlap of more than 5 images per pixel.</p> "> Figure 6
<p>(<b>a</b>) Orthomosaic and (<b>b</b>) the corresponding sparse Digital Surface Model (DSM) before densification (Source: Siafali Evangelia 2023).</p> "> Figure 7
<p>Key aspects of the study area: (<b>a</b>) Digital Elevation Model, (<b>b</b>) Digital Surface Model, (<b>c</b>) slope map, and (<b>d</b>) aspect map (Source: Siafali Evangelia 2023).</p> "> Figure 8
<p>Maps of the examined trail: (<b>a</b>) Normalized Vegetation Index map, (<b>b</b>) aspect map, (<b>c</b>) trail DEM, and (<b>d</b>) slope map (Source: Siafali Evangelia 2023).</p> "> Figure 9
<p>Earthworks calculation and distortion classification for: (<b>a</b>) 3 cm × 3 cm box range, (<b>b</b>) 4 cm × 4 cm box range, (<b>c</b>) 5 cm × 5 cm box range, and (<b>d</b>) trail geometry verified by on-site investigation (control).</p> "> Figure 10
<p>Visualization of 30 deformation classes from vehicular movement for: (<b>a</b>) range 3 cm × 3 cm box range, (<b>b</b>) 4 cm × 4 cm box range, and (<b>c</b>) 5 cm × 5 cm box range; and visualization of waterflow for: (<b>d</b>) 3 cm × 3 cm box range, (<b>e</b>) 4 cm × 4 cm box range, and (<b>f</b>) 5 cm × 5 cm box range.</p> "> Figure 11
<p>Flood hazard map of research area (Source: Siafali Evangelia 2023).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Vegetation of the Study Area
2.1.2. Flood Risk Management Conditions
2.2. Equipment
2.3. UAV Survey and Image Collection
2.4. Generation of Trail Surface Deformation Index
- Class 1 for positive values (cut: remove volume of material from the surface);
- Class 2 for negative values (fill: add material to the surface).
2.5. Generation of a Flood-Risk Map
3. Results
3.1. Camera Sensor Accuracy
3.2. UAV Data Accuracy Statistics
3.3. DEM Generation
3.4. Trail Deformation Index
3.5. Flood-Risk Map Generation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kweon, H.; Seo, J.I.; Lee, J.-W. Assessing the Applicability of Mobile Laser Scanning for Mapping Forest Roads in the Republic of Korea. Remote Sens. 2020, 12, 1502. [Google Scholar] [CrossRef]
- Dadrasjavan, F.; Zarrinpanjeh, N.; Ameri, A.; Engineering, G.; Branch, Q. Automatic Crack Detection of Road Pavement Based on Aerial UAV Imagery. Preprints 2019, 2019070009. [Google Scholar] [CrossRef]
- Lyons, C.K.; Borz, S.A.; Harvey, C.; Ramantswana, M.; Sakai, H.; Visser, R. Forest roads: Regional perspectives from around the world. Int. J. For. Eng. 2023, 34, 190–203. [Google Scholar] [CrossRef]
- Tan, Y.; Li, Y. UAV photogrammetry-based 3D road distress detection. ISPRS Int. J. Geo-Inf. 2019, 8, 409. [Google Scholar] [CrossRef]
- Xu, Q.; Li, M.; Jiang, X.; Zhang, Z.; Jiao, J.; Jian, J.; Li, J.; Yan, X.; Liang, Y.; Chen, T.; et al. Response of rill erosion to rainfall types and maintenance on the Loess Plateau: Implications for road erosion control. Catena 2022, 219, 106642. [Google Scholar] [CrossRef]
- Marchi, W.; Visser, R.; Abbas, D.; Nordfjell, T.; Mederski, P.S.; Chung, W. Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate. Sci. Total Environ. 2018, 634, 1385–1397. [Google Scholar] [CrossRef] [PubMed]
- Picchio, F.; Latterini, F.; Mederski, P.S.; Tocci, D.; Venanzi, R.; Stefanoni, W.; Pari, L. Applications of GIS-based software to improve the sustainability of a forwarding operation in central Italy. Sustainability 2020, 12, 5716. [Google Scholar] [CrossRef]
- Karagiannis, E. Evaluation of Road Opening up in Greek Forests; Scientific Yearbook; Department of Forestry and Natural Environmen, Aristotle University of Thessaloniki: Thessaloniki, Greece, 2008; pp. 714–727. [Google Scholar]
- Dowling, R.; Newsome, D.; Moore, S. Natural Area Tourism: Ecology: Impacts and Management; Channel View Publications: Bristol, UK, 2013. [Google Scholar]
- Santos, T.; Mendes, R.N.; Vasco, A. Recreational activities in urban parks: Spatial interactions among users. J. Outdoor Recreat. Tourism 2016, 15, 1–9. [Google Scholar] [CrossRef]
- Wilkes-Allemann, J.; Ludvig, A.; Gobs, S.; Lieberherr, E.; Hogl, K.; Selter, A. Getting a grip on negotiation processes: Addressing trade-offs in mountain biking in Austria, Germany and Switzerland. For. Pol. Econ. 2022, 136, 102683. [Google Scholar] [CrossRef]
- Wu, C.-C.; Li, C.-W.; Wang, W.-C. Low-impact hiking in natural areas: A study of nature park hikers’ negative impacts and on-site leave-no-trace educational program in Taiwan. Environ. Impact Assess. Rev. 2021, 87, 106544. [Google Scholar] [CrossRef]
- Wolf, I.D.; Wohlfart, T.; Brown, G.; Bartolomé Lasa, A. The use of public participation GIS (PPGIS) for park visitor management: A case study of mountain biking. Tour. Manag. 2015, 51, 112–130. [Google Scholar] [CrossRef]
- Bíl, M.; Bílová, M.; Kubeček, J. Unified GIS database on cycle tourism infrastructure. Tour. Manag. 2012, 33, 1554–1561. [Google Scholar] [CrossRef]
- Campelo, M.B.; Mendes, R.M.N. Comparing webshare services to assess mountain bike use in protected areas. J. Outdoor Recreat. Tour. 2016, 15, 82–88. [Google Scholar] [CrossRef]
- Hagen, S.; Boyes, M. Affective ride experiences on mountain bike terrain. J. Outdoor Recreat. Tour. 2016, 15, 89–98. [Google Scholar] [CrossRef]
- Nyelele, C.; Keske, C.; Chung, M.G.; Guo, H.; Egoh, B.N. Using social media data and machine learning to map recreational ecosystem services. Ecol. Indic. 2023, 154, 110606. [Google Scholar] [CrossRef]
- Siebert, S.; Herden, J.; Gey, H. Self-assessment of riding skills and perception of trail difficulty in mountain biking—An investigation within the German-speaking mountain biking community. J. Outdoor Recreat. Tour. 2022, 39, 100500. [Google Scholar] [CrossRef]
- Siafali, E. Implementation of Innovative Technologies in Surveying, Projecting, and Managing Hiking Trails. Ph.D. Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2023. [Google Scholar]
- Leung, Y.F.; Newburger, T.; Jones, M.; Kuhn, B.; Woiderski, B. Developing a monitoring protocol for visitor-created informal trails in Yosemite National Park, USA. Environ. Manag. 2011, 47, 93–106. [Google Scholar] [CrossRef]
- Marion, Y.F.; Eagleston, H.; Burroughs, K.J.L. A review and synthesis of recreation ecology research findings on visitor impacts to wilderness and protected natural areas. J. For. 2016, 114, 352–362. [Google Scholar] [CrossRef]
- Ramos-Scharrón, C.E.; Alicea-Díaz, E.E.; Figueroa-Sánchez, Y.A.; Viqueira-Ríos, R. Road cutslope erosion and control treatments in an actively-cultivated tropical montane setting. Catena 2022, 209, 105814. [Google Scholar] [CrossRef]
- Ballantyne, M.; Pickering, C.M. Differences in the impacts of formal and informal recreational trails on urban forest loss and tree structure. J. Environ. Manag. 2015, 159, 94–105. [Google Scholar] [CrossRef]
- Curran, M.P.; Murray, M.P. Soil disturbance, amelioration and rehabilitation affect forest growth, health, soil carbon and chemistry on five long-term soil productivity (LTSP) sites in southeastern British Columbia. For. Ecol. Manag. 2023, 546, 121362. [Google Scholar] [CrossRef]
- Hammitt, W.E.; Cole, D.N.; Monz, C.A. Wildland Recreation: Ecology and Management, 2nd ed.; Wiley Blackwell: Chichester, UK, 1998. [Google Scholar]
- Jamaluddin, J.; Kamarudin, N.; Ismail, M.H.; Ahmad, S.A. Optimizing timber transportation planning for timber harvesting using bees algorithm in Malaysia. J. Environ. Manag. 2023, 340, 117977. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Li, Q.; Eu, S.; Han, S.K.; Im, S. Assessing the impacts of log extraction by typical small shovel logging system on soil physical and hydrological properties in the Republic of Korea. Heliyon 2020, 6, e03544. [Google Scholar] [CrossRef]
- Leung, J.L.; Marion, Y.F. Recreation impacts and management in wilderness: A state-of-knowledge review. USDA For. Serv. Proc. 2000, 5, 23–40. [Google Scholar]
- Liddle, M. Recreation Ecology; Springer Dordrecht, The Netherlands, 1997.
- Monz, C.A.; Marion, J.L.; Goonan, K.A.; Manning, R.E.; Wimpey, J.; Carr, C. Assessment and monitoring of recreation impacts and resource conditions on mountain summits: Examples from the Northern Forest, USA. Mt. Res. Dev. 2010, 30, 332–343. [Google Scholar] [CrossRef]
- Naghdi, R.; Solgi, A.; Ilstedt, U. Soil chemical and physical properties after skidding by rubber-tired skidder in Hyrcanian forest, Iran. Geoderma 2016, 265, 12–18. [Google Scholar] [CrossRef]
- Sahani, N.; Ghosh, T. GIS-based spatial prediction of recreational trail susceptibility in protected area of Sikkim Himalaya using logistic regression, decision tree and random forest model. Ecol. Inf. 2021, 64, 101352. [Google Scholar] [CrossRef]
- Sitzia, T.; Rizzi, A.; Cattaneo, D.; Semenzato, P. Designing recreational trails in a forest dune habitat using least-cost path analysis at the resolution of visitor sight distance. Urban For. Urban Green. 2014, 13. [Google Scholar] [CrossRef]
- Solgi, A.; Najafi, A.; Page-Dumroese, D.S.; Zenner, E.K. Assessment of topsoil disturbance caused by different skidding machine types beyond the margins of the machine operating trail. Geoderma 2020, 367, 114238. [Google Scholar] [CrossRef]
- Deluca, T.H.; Freimund, W.A.; Cole, D.N. Influence of llamas, horses and hikers on soil erosion from established recreational trails in Western Montana, USA. Environ. Manag. 1998, 22, 255–262. [Google Scholar] [CrossRef]
- Rickard, C.A.; McLachlan, A.; Kerley, G.I.H. The effects of vehicular and pedestrian traffic on dune vegetation in South Africa. Ocean Coast. Manag. 1994, 23, 225–247. [Google Scholar] [CrossRef]
- Ballantyne, M.; Treby, D.L.; Quarmby, J.; Pickering, C.M. Comparing the impacts of different types of recreational trails on grey box grassy-woodland vegetation: Lessons for conservation and management. Aust. J. Bot. 2016, 64, 246–259. [Google Scholar] [CrossRef]
- Cole, D.N.; Bayfield, N.G. Recreational trampling of vegetation: Standard experimental procedures. Biol. Conserv. 1993, 63, 209–215. [Google Scholar] [CrossRef]
- Kutiel, P.; Eden, E.; Zhevelev, Y. Effect of experimental trampling and off-road motorcycle traffic on soil and vegetation of stabilised coastal dunes, Israel. Environ. Conserv. 2000, 27, 14–23. [Google Scholar] [CrossRef]
- Lemauviel, S.; Rozé, F. Response of three plant communities to trampling in a sand dune system in Brittany (France). Environ. Manag. 2003, 31, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Young, R.A.; Gilmore, A.R. Effects of Various Camping Intensities on Soil Properties in Illinois Campgrounds. Soil Sci. Soc. Am. J. 1976, 40, 908–911. [Google Scholar] [CrossRef]
- Akgul, M.; Yurtseven, H.; Akburak, S.; Demir, M.; Cigizoglu, H.K.; Ozturk, T.; Eksi, M.; Akay, A.O. Short term moniterning of forest road pavement degradation using terrestrial laser scanning. Measurement 2017, 103, 283–293. [Google Scholar] [CrossRef]
- Mercier, P.; Aas, G.; Dengler, J. Effects of skid trails on understory vegetation in forests: A case study from Northern Bavaria (Germany). For. Ecol. Manag. 2019, 453, 117579. [Google Scholar] [CrossRef]
- Olive, N.D.; Marion, J.L. The influence of use-related, environmental, and managerial factors on soil loss from recreational trails. J. Environ. Manag. 2009, 90, 1483–1493. [Google Scholar] [CrossRef]
- Ganatsios, H.P.; Tsioras, P.A.; Papaioannou, A.G.; Blinn, C.R. Short Term Impacts of Harvesting 0perations on Soil Chemical Properties in a Mediterranean Oak Ecosystem. Croat. J. For. Eng. 2021, 42, 463–476. [Google Scholar] [CrossRef]
- Jourgholami, M.; Hansson, L.J.; Högbom, L.; Jourgholami, M.; Laschi, A. Strategies to Mitigate the Effects of Soil Physical Disturbances Caused by Forest Machinery: A Comprehensive Review. Curr. For. Rep. 2022, 8, 20–37. [Google Scholar]
- Marchi, R.; Spinelli, R.; Verani, S.; Venanzi, R.; Certini, G.E.; Picchio, R. Environmental impact assessment of different logging methods in pine forests thinning. Ecol. Eng. 2014, 70, 429–436. [Google Scholar] [CrossRef]
- Solgi, A.; Lotfalian, M.; Rafiei, A.A.; Marchi, E.; Ilstedt, U. Combined effects of traffic intensity, skid trail slope, skidder type, and soil moisture content on soil degradation in the Hyrcanian forest of Iran. Int. J. For. Eng. 2023, 34, 385–396. [Google Scholar] [CrossRef]
- Sadeghi, S.; Solgi, A.; Tsioras, P.A. Effects of traffic intensity and travel speed on forest soil disturbance at different soil moisture conditions. Int. J. For. Eng. 2022, 33, 146–154. [Google Scholar] [CrossRef]
- Latterini, F.; Spinelli, R.; Venanzi, R.; Picchio, R. Acorn Review: Focus on ground-based extraction systems: Is skidding really more impactful than forwarding? For. Ecol. Manag. 2024, 551, 121514. [Google Scholar] [CrossRef]
- Picchio, R.; Mederski, P.S.; Tavankar, F. How and How Much, Do Harvesting Activities Affect Forest Soil, Regeneration and Stands? Curr. For. Rep. 2020, 6, 115–128. [Google Scholar] [CrossRef]
- Galidaki, G.; Zianis, D.; Gitas, I.; Radoglou, K.; Karathanassi, V.; Tsakiri–Strati, M.; Woodhouse, I.; Mallinis, G. Vegetation biomass estimation with remote sensing: Focus on forest and other wooded land over the Mediterranean ecosystem. Int. J. Remote Sens. 2017, 38, 1940–1966. [Google Scholar] [CrossRef]
- Kweon, H. Comparisons of Estimated Circuity Factor of Forest Roads with Different Vertical Heights in Mountainous Areas, Republic of Korea. Forests 2019, 10, 1147. [Google Scholar] [CrossRef]
- Mikita, T.; Krausková, D.; Hrůza, P.; Cibulka, M.; Patočka, Z. Forest Road Wearing Course Damage Assessment Possibilities with Different Types of Laser Scanning Methods including New iPhone LiDAR Scanning Apps. Forests 2022, 13, 1763. [Google Scholar] [CrossRef]
- Talbot, B.; Astrup, R. A review of sensors, sensor-platforms and methods used in 3D modelling of soil displacement after timber harvesting. Croat. J. For. Eng. 2021, 42, 149–164. [Google Scholar] [CrossRef]
- Šašak, J.; Gallay, M.; Kaňuk, J.; Hofierka, J.; Minár, J. Combined Use of Terrestrial Laser Scanning and UAV Photogrammetry in Mapping Alpine Terrain. Remote Sens. 2019, 11, 2154. [Google Scholar] [CrossRef]
- Tomljanović, K.; Kolar, A.; Đuka, A.; Franjević, M.; Jurjević, L.; Matak, I.; Ugarković, D.; Balenović, I. Application of UAS for Monitoring of Forest Ecosystems—A Review of Experience and Knowledge. Croat. J. For. Eng. 2022, 43, 487–504. [Google Scholar] [CrossRef]
- Aldea, S.E.; Le Hégarat-Mascle, S. Robust crack detection for unmanned aerial vehicles inspection in an 409 a-contrario decision framework. J. Electron. Imaging 2015, 24, 061119. [Google Scholar] [CrossRef]
- Grandsaert, P.J. Integrating Pavement Crack Detection and Analysis Using Autonomous Unmanned Aerial Vehicle Imagery; Air Force Institute of Technology: Wright-Patterson, OH, USA, 2015. [Google Scholar]
- Sankarasrinivasan, S.; Balasubramanian, E.; Karthik, K.; Chandrasekar, U.; Gupta, R.S. Health Monitoring of Civil Structures with Integrated UAV and Image Processing System. Procedia Comput. Sci. 2015, 54, 508–515. [Google Scholar] [CrossRef]
- Alfio, V.S.; Costantino, D.; Pepe, M. Influence of Image TIFF Format and JPEG Compression Level in the Accuracy of the 3D Model and Quality of the Orthophoto in UAV Photogrammetry. J. Imaging 2020, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Anifantis, A.S.; Camposeo, S.; Vivaldi, G.A.; Santoro, F.; Pascuzzi, S. Comparison of UAV Photogrammetry and 3D Modeling Techniques with Other Currently Used Methods for Estimation of the Tree Row Volume of a Super-High-Density Olive Orchard. Agriculture 2019, 9, 233. [Google Scholar] [CrossRef]
- Manajitprasert, S.; Tripathi, N.K.; Arunplod, S. Three-Dimensional (3D) Modeling of Cultural Heritage Site Using UAV Imagery: A Case Study of the Pagodas in Wat Maha That, Thailand. Appl. Sci. 2019, 9, 3640. [Google Scholar] [CrossRef]
- Pourreza, M.; Moradi, F.; Khosravi, M.; Deljouei, A.; Vanderhoof, M.K. GCPs-Free Photogrammetry for Estimating Tree Height and Crown Diameter in Arizona Cypress Plantation Using UAV-Mounted GNSS RTK. Forests 2022, 13, 1905. [Google Scholar] [CrossRef]
- Tomaštík, J.; Mokroš, M.; Surový, P.; Grznárová, A.; Merganič, J. UAV RTK/PPK Method—An Optimal Solution for Mapping Inaccessible Forested Areas? Remote Sens. 2019, 11, 721. [Google Scholar] [CrossRef]
- Nakagomi, H.; Fuse, Y.; Nagata, Y.; Hosaka, H.; Miyamoto, H.; Yokozuka, M.; Kamimura, A.; Watanabe, H.; Tanzawa, T.; Kotani, S. Forest road surface detection using LiDAR-SLAM and U-Net. In Proceedings of the 2021 IEEE/SICE International Symposium on System Integration, SII 2021, Online, 11–14 January 2021; pp. 727–732. [Google Scholar]
- Luetzenburg, G.; Kroon, A.; Bjørk, A.A. Evaluation of the Apple iPhone 12 Pro LiDAR for an Application in Geosciences. Sci. Rep. 2021, 11, 22221. [Google Scholar] [CrossRef]
- Zeybek, B.M.; Biçici, S. Road Distress Measurements Using UAV. Turk. J. Remote Sens. GIS 2020, 1, 13–23. [Google Scholar]
- Baiocchi, V.; Del Pizzo, S.; Monti, F.; Pugliano, G.; Onori, M.; Robustelli, U.; Troisi, S.; Vatore, F.; León Trujillo, F.J. Solutions and limitations of the geomatic survey of an archaeological site in hard to access areas with a latest generation smartphone: The example of the Intihuatana stone in Machu Picchu (Peru). ACTA IMEKO 2022, 11, 8. [Google Scholar] [CrossRef]
- Díaz-Vilariño, L.; Tran, H.; Frías, E.; Balado, J.; Khoshelham, K. 3D mapping of indoor and outdoor environments using Apple smart devices. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2022, XLIII-B4-2022, 303–308. [Google Scholar]
- Zhu, L.; Zhang, H.; Li, X.; Zhu, F.; Liu, Y. GNSS Timing Performance Assessment and Results Analysis. Sensors 2022, 22, 2486. [Google Scholar] [CrossRef] [PubMed]
- Hruza, T.; Tyagur, N.; Krejza, Z.; Cibulka, M.; Procházková, A.; Patocka, Z.P. Detecting Forest Road Wearing Course Damage Using Different Methods of Remote Sensing. Remote Sens. 2018, 10, 492. [Google Scholar] [CrossRef]
- Zagas, T.; Karagiannis, E.; Zagka, T.; Siafali, E. Investigation for the signage of the Mavrobara hiking trail in Polichrono Halkidiki. 2018.
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos Trans. AGU 1957, 38, 913–920. [Google Scholar]
- European Ramblers’ Association. Available online: https://www.era-ewv-ferp.org/ (accessed on 28 October 2023).
- Kim, J.; Kim, I.; Ha, E.; Choi, B. UAV Photogrammetry for Soil Surface Deformation Detection in a Timber Harvesting Area, South Korea. Forests 2023, 14, 980. [Google Scholar] [CrossRef]
- Marra, E.; Cambi, M.; Fernandez-Lacruz, R.; Giannetti, F.; Marchi, E.; Nordfjell, T. Photogrammetric estimation of wheel rut dimensions and soil compaction after increasing numbers of forwarder passes. Scand. J. For. Res. 2018, 33, 613–620. [Google Scholar] [CrossRef]
- Marra, E.; Laschi, A.; Fabiano, F.; Foderi, C.; Neri, F.; Mastrolonardo, G.; Nordfjell, T.; Marchi, E. Impacts of wood extraction on soil: Assessing rutting and soil compaction caused by skidding and forwarding by means of traditional and innovative methods. Eur. J. For. Res. 2022, 141, 71–86. [Google Scholar] [CrossRef]
- Cambi, M.; Giannetti, F.; Bottalico, F.; Travaglini, D.; Nordfjell, T.; Chirici, G.; Marchi, E. Estimating machine impact on strip roads via close-range photogrammetry and soil parameters: A case study in central Italy. IForest 2018, 11, 148–154. [Google Scholar] [CrossRef]
- Pierzchała, M.; Talbot, B.; Astrup, R. Estimating Soil Displacement from Timber Extraction Trails in Steep Terrain: Application of an unmanned aircraft for 3D Modelling. Forests 2014, 5, 1212–1223. [Google Scholar] [CrossRef]
- Howell, R.; Aust, W.M.; Bolding, M.C. Forestry best management practices and modeled erosion on planned and logger-selected bladed skid trails in the Ridge and Valley region, Virginia, USA. Int. J. For. Eng. 2019, 30, 68–75. [Google Scholar] [CrossRef]
- Nevalainen, P.; Salmivaara, A.; Ala-Ilomäki, J.; Launiainen, S.; Hiedanpää, J.; Finér, L.; Pahikkala, T.; Heikkonen, J. Estimating the rut depth by UAV photogrammetry. Remote Sens. 2017, 9, 1279. [Google Scholar] [CrossRef]
- Pierzchała, M.; Talbot, B.; Astrup, R. Measuring wheel ruts with close-range photogrammetry. Forestry 2016, 89, 383–391. [Google Scholar] [CrossRef]
- Talbot, B.; Rahlf, J.; Astrup, R. An operational UAV-based approach for stand-level assessment of soil disturbance after forest harvesting. Scand. J. For. Res. 2018, 33, 387–396. [Google Scholar] [CrossRef]
- Lee, E.; Eu, S.; Li, Q. Assessment of Soil Erosion Potential from the Disturbed Surface of Skid Trails in Small Shovel Harvesting System. Front. Environ. Sci. 2022, 10, 756848. [Google Scholar] [CrossRef]
- Botha, T.; Johnson, D.; Els, S.; Shoop, S. Real time rut profile measurement in varying terrain types using digital image correlation. J. Terramech. 2019, 82, 53–61. [Google Scholar] [CrossRef]
- Aricak, B. Using remote sensing data to predict road fill areas and areas affected by fill erosion with planned forest road construction: A case study in Kastamonu Regional Forest Directorate (Turkey). Environ. Monit. Assess. 2015, 187, 417. [Google Scholar] [CrossRef]
- Ćwiąkała, P.; Kocierz, R.; Puniach, E.; Nędzka, M.; Mamczarz, K.; Niewiem, W.; Wiącek, P. Assessment of the possibility of using Unmanned Aerial Vehicles (UAVs) for the documentation of hiking trails in alpine areas. Sensors 2018, 18, 81. [Google Scholar] [CrossRef]
Specification | Value |
---|---|
Cruise speed | 11–30 m/s (40–110 km/h) |
Max. wind resistance | Up to 12.8 m/s (46 km/h) |
Landing type | Automatic linear landing (5 m accuracy in 35° angle cone) |
Service temperature * | 5° to 104 °F (−15° to 40 °C) |
Humidity | Light rain resistance |
Ground avoidance | Yes–LiDAR (range 120 m) |
Ground resolution | Down to 1.5 cm |
Max. flight time | 90 min |
Coverage at 400 ft/120 m | 220 ha to 500 ha |
Linear coverage | Up to 27.7 km out and back |
Focal Length | Principal Point x | Principal Point y | R1 | R2 | R3 | T1 | T2 | |
---|---|---|---|---|---|---|---|---|
Initial Values | 4430.420 pixel 10.633 mm | 2725.000 pixel 6.540 mm | 1811.670 pixel 4.348 mm | 0.033 | −0.209 | 0.315 | 0.000 | 0.000 |
Optimized Values | 4393.184 pixel 10.544 mm | 2720.287 pixel 6.529 mm | 1805.932 pixel 4.334 mm | 0.028 | −0.196 | 0.297 | 0.000 | 0.001 |
Uncertainties (Sigma) | 0.218 pixel 0.001 mm | 0.118 pixel 0.000 mm | 0.108 pixel 0.000 mm | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 |
Min Error (m) | Max Error (m) | Geolocation Error (%) | ||
---|---|---|---|---|
X | Y | Z | ||
– | 0.06 | −0.87 | 0.43 | 0.22 |
−0.06 | −0.05 | 1.09 | 0.87 | 0.43 |
−0.05 | −0.04 | 3.91 | 1.52 | 1.74 |
−0.04 | −0.03 | 4.57 | 5.00 | 9.35 |
−0.03 | −0.01 | 15.00 | 15.22 | 15.43 |
−0.01 | 0.00 | 25.22 | 26.52 | 22.61 |
0.00 | 0.01 | 23.04 | 29.13 | 21.30 |
0.01 | 0.03 | 14.57 | 14.35 | 18.70 |
0.03 | 0.04 | 7.83 | 4.13 | 7.83 |
0.04 | 0.05 | 2.39 | 1.52 | 2.17 |
0.05 | 0.06 | 0.43 | 1.09 | 0.22 |
0.06 | −1.09 | 0.22 | 0.00 | |
Mean (m) | 0.000023 | −0.000044 | 0.000177 | |
Sigma (m) | 0.022535 | 0.019567 | 0.020261 | |
RMS Error (m) | 0.022535 | 0.019567 | 0.020262 |
Value | Category | Pixel Count | Area (m2) | Volume (m3) |
---|---|---|---|---|
0 | Excluded | 20,842 | 833.68 | 208.42 |
1 | Fill volume | 129,666 | 5186.64 | 1296.66 |
2 | Cut volume | 124,368 | 4974.72 | 1243.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siafali, E.; Tsioras, P.A. An Innovative Approach to Surface Deformation Estimation in Forest Road and Trail Networks Using Unmanned Aerial Vehicle Real-Time Kinematic-Derived Data for Monitoring and Maintenance. Forests 2024, 15, 212. https://doi.org/10.3390/f15010212
Siafali E, Tsioras PA. An Innovative Approach to Surface Deformation Estimation in Forest Road and Trail Networks Using Unmanned Aerial Vehicle Real-Time Kinematic-Derived Data for Monitoring and Maintenance. Forests. 2024; 15(1):212. https://doi.org/10.3390/f15010212
Chicago/Turabian StyleSiafali, Evangelia, and Petros A. Tsioras. 2024. "An Innovative Approach to Surface Deformation Estimation in Forest Road and Trail Networks Using Unmanned Aerial Vehicle Real-Time Kinematic-Derived Data for Monitoring and Maintenance" Forests 15, no. 1: 212. https://doi.org/10.3390/f15010212