Classification and Observed Seasonal Phenology of Broadleaf Deciduous Forests in a Tropical Region by Using Multitemporal Sentinel-1A and Landsat 8 Data
<p>The study area in Yok Don National Park, Dak Lak Province, in the Central Highlands of Vietnam. (<b>a</b>) Vietnam administrative boundary; (<b>b</b>) administrative boundary of Dak Lak Province at district level and the study area located in red rectangle; and (<b>c</b>) topography of Yok Don National Park.</p> "> Figure 2
<p>Landsat 8 cloud-free composite images in the rainy (<b>a</b>,<b>c</b>) and dry (<b>b</b>,<b>d</b>) seasons in Yok Don National Park.</p> "> Figure 3
<p>(<b>a</b>) Distribution of field survey data: (<b>a</b>) plots used for training are shown in green and plots used for validation are shown in red and (<b>b</b>) spatial distribution of the 39 field survey plots of the four types of deciduous forest used for training.</p> "> Figure 4
<p>Normalized difference vegetation index (NDVI) images generated from Landsat 8 cloud-free composite images: (<b>a</b>) NDVI image in the dry season and (<b>b</b>) NDVI image in the rainy season.</p> "> Figure 5
<p>Analysis of deciduous forest species in the composite image: (<b>a</b>) <span class="html-italic">Shorea siamensis</span>, (<b>b</b>) <span class="html-italic">Shorea obtusa</span>, (<b>c</b>) <span class="html-italic">semi-evergreen/evergreen</span>, and (<b>d</b>) <span class="html-italic">Dipterocarpus tuberculatus.</span></p> "> Figure 6
<p>Backscatter profiles of BDFs on multitemporal Sentinel-1A images: (<b>a</b>) <span class="html-italic">Shorea siamensis</span>, (<b>b</b>) <span class="html-italic">Shorea obtusa</span>, (<b>c</b>) <span class="html-italic">Dipterocarpus tuberculatus</span>, (<b>d</b>) <span class="html-italic">evergreen/semi-evergreen</span>, (<b>e</b>) standard deviation backscatter value of BDFs and evergreen/semi-evergreen, (<b>f</b>) average backscatter value of BDFs and evergreen/semi-evergreen, and (<b>g</b>) comparison of backscatter profile of BDFs and evergreen. DOY (Day of the Year of the Julian calendar).</p> "> Figure 7
<p>Identification scheme of deciduous forest species by using Sentinel-1A and Landsat 8 images. NDVI_D is the NDVI in the dry season and NDVI_R is NDVI in the rainy season. In this flowchart, M2 is the mean backscatter value in February, M3 in March, and M5 in May.</p> "> Figure 8
<p>Multiresolution segmentation applied for NDVI (rainy and dry seasons) and multitemporal Sentinel-1A data with parameters: scale, 10; shape, 0.4; compactness, 0.8.</p> "> Figure 9
<p>(<b>a</b>) Map of BDFs and (<b>b</b>) pie chart of area percentage for the classified objects in Yok Don National Park.</p> "> Figure 10
<p>Location of 66 field survey plots for validation and field photos: (<b>a</b>) <span class="html-italic">Shorea siamensis</span>, (<b>b</b>) <span class="html-italic">Shorea obtusa</span>, (<b>c</b>) <span class="html-italic">Dipterocarpus tuberculatus</span>, and (<b>d</b>) semi-evergreen/evergreen forest.</p> "> Figure A1
<p><span class="html-italic">Dipterocarpus tuberculatus</span>.</p> "> Figure A2
<p><span class="html-italic">Shorea siamensis</span>.</p> "> Figure A3
<p><span class="html-italic">Shorea obtuse</span>.</p> "> Figure A4
<p><span class="html-italic">Dipterocarpus obtusifolius</span> (mixed semi-evergreen forest).</p> ">
Abstract
:1. Introduction
2. Study Site
3. Materials and Methods
3.1. Satellite Data and Image Preprocessing
3.2. Field Survey Data
3.3. Methodology
3.3.1. NDVI Images
3.3.2. Determining the Dominant Species of Broadleaf Deciduous Forest Using Multitemporal SAR Images
3.3.3. Proposed Method
4. Result and Discussion
4.1. Broadleaf Deciduous Forest Map
4.2. Accuracy Assessment
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
- a.
- Dipterocarpus tuberculatus
- b.
- Shorea siamensis
- c.
- Shorea obtuse
- d.
- Dipterocarpus obtusifolius
References
- Meyfroidt, P.; Lambin, E.F. Forest transition in Vietnam and its environmental impacts. Glob. Chang. Biol. 2008, 14, 1319–1336. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Liou, Y.A. Global mapping of eco-environmental vulnerability from human and nature disturbances. Sci. Total. Environ. 2019, 664, 995–1004. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Liou, Y.A.; Li, M.L.; Tran, T.A. Zoning eco-environmental vulnerability for environmental management and protection. Ecol. Indic. 2016, 69, 100–117. [Google Scholar] [CrossRef]
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Zhou, L.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. 2001, 106, 20069–20083. [Google Scholar] [CrossRef]
- Liou, Y.A.; Nguyen, K.A.; Li, M.H. Assessing spatiotemporal eco-environmental vulnerability by Landsat data. Ecol. Indic. 2017, 80, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Sader, S.A. MODIS time-series imagery for forest disturbance detection and quantification of patch size effects. Remote Sens. Environ. 2005, 99, 462–470. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hufkens, K.; A Friedl, M.; Sonnentag, O.; Braswell, B.H.; Milliman, T.; Richardson, A.D. Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sens. Environ. 2011, 117, 307–321. [Google Scholar] [CrossRef]
- Justice, C.; Townshend, J.; Vermote, E.; Masuoka, E.; Wolfe, R.; Saleous, N.; Roy, D.; Morisette, J. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Hansen, M.C.; Stehman, S.V.; Potapov, P.V. Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. USA 2010, 107, 8650–8655. [Google Scholar] [CrossRef] [Green Version]
- Mather, A.S.; Needle, C.L. The forest transition: A theoretical basis. Area 1997, 30, 117–124. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Liou, Y.A. Mapping global eco-environment vulnerability due to human and nature disturbances. MethodsX 2019, 6, 862–875. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.A.; Liou, Y.A.; Terry, J.P. Vulnerability of Vietnam to typhoons: A spatial assessment based on hazards, exposure and adaptive capacity. Sci. Total. Environ. 2019, 682, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.; Liou, Y.A.; Nguyen, K.A.; Sharma, R.C.; Tran, D.P.; Liou, C.L.; Cham, D.D. Assessing the Effects of Land-Use Types in Surface Urban Heat Islands for Developing Comfortable Living in Hanoi City. Remote Sens. 2018, 10, 1965. [Google Scholar] [CrossRef] [Green Version]
- Rudel, T.K.; Coomes, O.T.; Moran, E.; Achard, F.; Angelsen, A.; Xu, J.; Lambin, E. Forest transitions: Towards a global understanding of land use change. Glob. Environ. Chang. 2004, 15, 23–31. [Google Scholar] [CrossRef]
- Chen, X.; Vierling, L.; Deering, D.; Conley, A. Monitoring boreal forest leaf area index across a Siberian burn chronosequence: A MODIS validation study. Int. J. Remote Sens. 2005, 26, 5433–5451. [Google Scholar] [CrossRef] [Green Version]
- Coops, N.C.; Wulder, M.A.; Iwanicka, D. Large area monitoring with a MODIS-based Disturbance Index (DI) sensitive to annual and seasonal variations. Remote Sens. Environ. 2009, 113, 1250–1261. [Google Scholar] [CrossRef]
- Forzieri, G.; Castelli, F.; Vivoni, E.R. A predictive multidimensional model for vegetation anomalies derived from remote-sensing observations. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1729–1741. [Google Scholar] [CrossRef]
- Xiao, X.; Biradar, C.; Wang, A.; Sheldon, S.; Chen, Y. Recovery of vegetation canopy after severe fire in 2000 at the Black Hills National Forest, South Dakota, USA. J. Resour. Ecol. 2011, 2, 106–116. [Google Scholar]
- Hargrove, W.W.; Spruce, J.P.; Gasser, G.E.; Hoffman, F.M. Toward a national early warning system for forest disturbances using remotely sensed canopy phenology. Photogramm. Eng. Remote Sens. 2009, 75, 1150–1156. [Google Scholar]
- Delbart, N.; le Toan, T.; Kergoat, L.; Fedotova, V. Remote sensing of spring phenology in boreal regions: A free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982–2004). Remote Sens. Environ. 2006, 101, 52–62. [Google Scholar] [CrossRef]
- Maignan, F.; Breon, F.M.; Bacour, C.; Demarty, J.; Poirson, A. Interannual vegetation phenology estimates from global AVHRR measurements:Comparison with in situ data and applications. Remote Sens. Environ. 2008, 112, 496–505. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Vieira, M.A.; Formaggio, A.R.; Rennó, C.D.; Atzberger, C.; Aguiar, D.A.; Mello, M.P. Object Based Image Analysis and Data Mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas. Remote Sens. Environ. 2012, 123, 553–562. [Google Scholar] [CrossRef]
- Marshall, M.; Thenkabail, P.; Biggs, T.; Post, K. Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation). Agric. For. Meteorol. 2015, 218, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Maschler, J.; Atzberger, C.; Immitzer, M. Individual Tree Crown Segmentation and Classification of 13 Tree Species Using Airborne Hyperspectral Data. Remote Sens. 2018, 10, 1218. [Google Scholar] [CrossRef] [Green Version]
- Marius, R.; Schaepman, E.M.; Small, D. Using multitemporal Sentinel-1 C-band backscatter to monitor phenology and classify deciduous and coniferous forests in Northern Switzerland. Remote Sens. 2017, 10, 55. [Google Scholar] [CrossRef] [Green Version]
- Quegan, S.; Le, T.T.; Yu, J.J.; Ribbes, F.; Floury, N. Multitemporal ERS SAR analysis applied to forest mapping. IEEE Trans. Geosci. Remote Sens. 2000, 38, 741–753. [Google Scholar] [CrossRef]
- Frison, P.L.; Fruneau, B.; Kmiha, S.; Soudani, K.; Dufrêne, E.; Le Toan, T.; Koleck, T.; Villard, L.; Mougin, E.; Rudant, J.P. Potential of Sentinel-1 Data for monitoring temperate mixed forest phenology. Remote Sens. 2018, 10, 2049. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Xiao, X.; Chen, B.; Torbick, N.; Jin, C.; Zhang, G.; Biradar, C. Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sens. Environ. 2013, 134, 392–402. [Google Scholar] [CrossRef]
- Zhou, T.; Pan, J.; Zhang, P.; Wei, S.; Han, T. Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region. Sensors 2017, 17, 1210. [Google Scholar] [CrossRef]
- Achard, F.; Eva, H.D.; Stibig, H.J.; Mayaux, P.; Gallego, J.; Richards, T.; Malingreau, J.P. Determination of deforestation rates of the world’s humid tropical forests. Science 2002, 297, 999–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, T.D.; Yoshino, K.; Bui, D.T. Biomass estimation of Sonneratia caseolaris (l.) Engler at a coastal area of Hai Phong city (Vietnam) using ALOS-2 PALSAR imagery and GIS-based multi-layer perceptron neural networks. GISci. Remote Sens. 2017, 54, 329–353. [Google Scholar] [CrossRef]
- Vafaei, S.; Soosani, J.; Adeli, K.; Fadaei, H.; Naghavi, H.; Pham, T.D.; Bui, D.T. Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran). Remote Sens. 2018, 10, 172. [Google Scholar] [CrossRef] [Green Version]
- Clerici, N.; Calderón, C.A.; Posada, J.M. Fusion of Sentinel-1a and Sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia. J. Maps 2017, 13, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Forest Monitoring Designed for Action. Available online: https://www.globalforestwatch.org (accessed on 10 November 2020).
- Nguyen, T.T.; Baker, P.J. Structure and composition of deciduous dipterocarp forest in Central Vietnam: Patterns of species dominance and regeneration failure. Plant Ecol. Divers. 2016, 9, 589–601. [Google Scholar] [CrossRef]
- Rastogi, A. Methods in applied ethnobotany. In Lessons from the Field; Discussion Paper Series; International Centre for Integrated Mountain Development: Kathmandu, Nepal, 1999. [Google Scholar]
- Ho, V.C.; Pham, B.Q. Biodiversity values and conservation management issues in Yok Don National Park. J. Agric. Rural Dev. 2006, 2, 65–82. [Google Scholar]
- Ngo, T.D.; Ho, V.C.; Nguyen, N.T.; Vu, A.T. The vegetation of Yok Don National Park-A special ecosystem in the Central Highlands. J. Agric. Rural Dev. 2006, 2, 61–64. [Google Scholar]
- Dong, X.S. The main flora advantages of dipterocarp forest in Yok Don National Park and some conservation measures. J. Agric. Rural Dev. 2006, 2, 80–83. [Google Scholar]
- Dong, X.S. Some states of dipterocarp forest in Yok Don National Park and conservation measures. J. Agric. Rural Dev. 2006, 1, 59–70. [Google Scholar]
- Liou, Y.A.; Le, M.S.; Chien, H. Normalized Difference Latent Heat Index for Remote Sensing of Land Surface Energy Fluxes. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1423–1433. [Google Scholar] [CrossRef]
Specifications | Landsat 8/T1_TOA |
---|---|
Acquisition time | |
In dry season (6 scenes) | 01 January 2015; 17 January 2015; 02 February 2015; 18 February 2015; 06 March 2015; 22 March 2015 |
In rainy season (12 scenes) | 10 June 2015; 26 June 2015; 12 July 2015; 28 July 2015; 13 August 2015; 29 August 2015; 30 September 2015; 16 October 2015; 12 June 2016; 14 July 2016; 30 July 2016; 15 August 2016 |
Path/Row | 124/51 |
Level | Level-1 |
Band | Blue, Green, Red, NIR, SWIR-1, and SWIR-2 |
Resolution | 30 m |
Bit depth | 16 bits |
Specifications | Sentinel-1A Data |
---|---|
Acquisition time | 22 February 2015; 30 March 2015; 17 May 2015; 28 July 2015; 21 August 2015; 14 September 2015; 08 October 2015; 01 November 2015; 19 December 2015 |
Ascending/Descending | Ascending |
Mode | IW (Interferometry Wide Mode) |
Band | C-band (5.46 Hz) |
Polarization | VV and VH |
Level processing | Level-1 GRD (Ground Range Detected) |
Resolution | 10 × 10 m |
Bit depth | 16 bits |
Field Surveying Data | ||||||
---|---|---|---|---|---|---|
Classes | Semi-Evergreen /Evergreen | S. siamensis | S. obtusa | D. tuberculatus | Total | User Accuracy (%) |
Semi-evergreen /Evergreen | 7 | 0 | 1 | 2 | 10 | 70.0% |
S. siamensis | 0 | 7 | 1 | 1 | 9 | 77.8% |
S. obtusa | 0 | 0 | 16 | 3 | 19 | 84.2% |
D. tuberculatus | 1 | 0 | 5 | 22 | 28 | 78.6% |
Total | 8 | 7 | 23 | 28 | 66 | |
Producer Accuracy % | 87.5% | 100% | 69.6% | 78.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, A.T.; Nguyen, K.A.; Liou, Y.A.; Le, M.H.; Vu, V.T.; Nguyen, D.D. Classification and Observed Seasonal Phenology of Broadleaf Deciduous Forests in a Tropical Region by Using Multitemporal Sentinel-1A and Landsat 8 Data. Forests 2021, 12, 235. https://doi.org/10.3390/f12020235
Tran AT, Nguyen KA, Liou YA, Le MH, Vu VT, Nguyen DD. Classification and Observed Seasonal Phenology of Broadleaf Deciduous Forests in a Tropical Region by Using Multitemporal Sentinel-1A and Landsat 8 Data. Forests. 2021; 12(2):235. https://doi.org/10.3390/f12020235
Chicago/Turabian StyleTran, Anh Tuan, Kim Anh Nguyen, Yuei An Liou, Minh Hang Le, Van Truong Vu, and Dinh Duong Nguyen. 2021. "Classification and Observed Seasonal Phenology of Broadleaf Deciduous Forests in a Tropical Region by Using Multitemporal Sentinel-1A and Landsat 8 Data" Forests 12, no. 2: 235. https://doi.org/10.3390/f12020235