The Development of Renewable Energy Sources in the European Union in the Light of the European Green Deal
<p>Distance of EU countries from the development pattern according to Hellwig’s method in 2012 and 2020. Source: own study based on data from <a href="#energies-15-05576-t001" class="html-table">Table 1</a>.</p> "> Figure 2
<p>Diagram of the course of agglomeration for 2012. Source: author’s own study.</p> "> Figure 3
<p>Clustering of EU countries with similar levels of RES development in 2012. Source: author’s own study.</p> "> Figure 4
<p>Diagram of the course of agglomeration for 2020. Source: author’s own study.</p> "> Figure 5
<p>Similarity of EU countries in terms of the level of RES development in 2020 based on Ward’s method. Source: author’s own study.</p> ">
Abstract
:1. Introduction
2. EU Development Assumptions for the Development of Renewable Energy Sources
- A new benchmark of 49% renewable energy use by 2030 in buildings;
- A new benchmark of 1.1 percentage point of annual growth in renewable energy use in industry;
- A binding annual increase of 1.1 percentage point for member states in the use of RES for heating and cooling;
- An indicative annual increase of 2.1 percentage points for the use of RES and waste-to-energy heating and cooling for urban heating and cooling [4].
- A 2.2 percent share of advanced biofuels and biogas, with an interim target of 0.5% by 2025;
- A target of 2.6% for non-biological renewable fuels and a 50% share of renewable energy in hydrogen consumption in the industry, including non-energy applications, by 2030 [4].
3. Methods
3.1. Hellwig’s Method
- —standardized value of feature k for country i;
- —set of stimulants;
- —value of feature k in country i;
- —arithmetic mean of variable k;
- —standard deviation of variable k;
- —number of variables;
- —number of countries.
- —arithmetic mean of ci0 (i = 1, 2, 3, … n) sequence;
- —standard deviation of ci0 (i = 1, 2, 3, … n) sequence.
- Group I—countries with the highest level of RES development: ;
- Group II—countries with high level of RES development: ;
- Group III—countries with low level of RES development: ;
- Group IV—countries with very low level of RES development: .
- —arithmetic mean of the synthetic indicator;
- —standard deviation of the synthetic indicator.
3.2. Ward’s Method
3.3. Variables Adopted for the Studies
- x1—share of energy from renewable sources in total primary energy (%);
- x2—share of renewables in gross final energy consumption (%);
- x3—share of renewable energy in final energy consumption in transport (%);
- x4—share of electricity from renewable sources in gross final electricity consumption (%);
- x5—share of energy from renewable sources in heating and cooling (%);
- x6—installed capacity of wind energy (%);
- x7—installed capacity of solar energy (%);
- x8—installed capacity of bioenergy (%);
- x9—installed capacity of hydropower (%).
4. Results
4.1. Level of Development of RES of the European Union Countries on the Basis of Hellwig’s Indicator
4.2. Similarities of European Union Countries in the Development of RES Based on Ward’s Method
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angheluta, S.P.; Burlacu, S.; Diaconu, A.; Curea, C.S. The Energy from Renewable Sources in the European Union: Achieving the Goals. Eur. J. Sustain. Dev. 2019, 8, 57. [Google Scholar] [CrossRef]
- European Union. Consolidated Version of the Treaty on the Functioning of the European Union; European Union: Brussel, Belgium, 1957; p. 154. [Google Scholar]
- UNESCO 21st Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (COP21/CMP11). Available online: https://en.unesco.org/events/21st-session-conference-parties-united-nations-framework-convention-climate-change-cop21cmp11 (accessed on 9 June 2022).
- Renewable Energy|Fact Sheets on the European Union|European Parliament. Available online: https://www.europarl.europa.eu/factsheets/en/sheet/70/renewable-energy (accessed on 9 June 2022).
- Renewable Energy. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=LEGISSUM:4372645 (accessed on 21 June 2022).
- The Publications Office of the European Union. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions the European Green Deal, COM/2019/640 Final. Available online: http://op.europa.eu/en/publication-detail/-/publication/b828d165-1c22-11ea-8c1f-01aa75ed71a1/language-en (accessed on 9 June 2022).
- Leonard, M.; Pisani-Ferry, J.; Shapiro, J.; Tagliapietra, S.; Wolf, G. The Geopolitics of the European Green Deal. Int. Organ. Res. J. 2021, 16, 204–235. [Google Scholar] [CrossRef]
- The Publications Office of the European Union. PE/27/2021/REV/1, Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 Establishing the Framework for Achieving Climate Neutrality and Amending Regulations (EC) No. 401/2009 and (EU) 2018/1999 (‘European Climate Law’). Available online: http://op.europa.eu/en/publication-detail/-/publication/365a2e8e-e04f-11eb-895a-01aa75ed71a1 (accessed on 9 June 2022).
- Qureshi, M.I.; Rasli, A.; Zaman, K. Energy Crisis, Greenhouse Gas Emissions and Sectoral Growth Reforms: Repairing the Fabricated Mosaic. J. Clean. Prod. 2015, 112, 3657–3666. [Google Scholar] [CrossRef]
- Hafner, M.; Raimondi, P.P. Priorities and Challenges of the EU Energy Transition: From the European Green Package to the New Green Deal. Russ. J. Econ. 2020, 6, 374–389. [Google Scholar] [CrossRef]
- Kougias, I. The Role of Photovoltaics for the European Green Deal and the Recovery Plan. Renew. Sustain. Energy Rev. 2021, 144, 111017. [Google Scholar] [CrossRef]
- Piekut, M. The Consumption of Renewable Energy Sources (RES) by the European Union Households between 2004 and 2019. Energies 2021, 14, 5560. [Google Scholar] [CrossRef]
- Pakulska, T. Green Energy in Central and Eastern European (CEE) Countries: New Challenges on the Path to Sustainable Development. Energies 2021, 14, 884. [Google Scholar] [CrossRef]
- Peña-Ramos, J.A.; del Pino-García, M.; Sánchez-Bayón, A. The Spanish Energy Transition into the EU Green Deal: Alignments and Paradoxes. Energies 2021, 14, 2535. [Google Scholar] [CrossRef]
- Hellwig, Z. Zastosowanie Metody Taksonomicznej Do Typologicznego Podziału Krajów Ze Względu Na Poziom Ich Rozwoju Oraz Zasoby i Strukturę Wykwalifikowanych Kadr. Przegląd Stat. 1968, 15, 307–327. [Google Scholar]
- Hellwig, Z. Procedure of Evaluating High-Level Manpower Data and Typology of Countries by Means of the Taxonomic Method. In Towards a System of Human Resources Indicators for Less Developed Countries: Papers Prepared for a Unesco Research Projekt; Gostkowski, Z., Ed.; Ossolineum: Wrocław, Poland, 1972; pp. 115–134. [Google Scholar]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Nowakowska, A. Zdolności Innowacyjne Polskich Regionów; Wydawnictwo Uniwersytetu Łódzkiego: Łódź, Poland, 2009. [Google Scholar]
- Strahl, D. Metody Oceny Rozwoju Regionalnego; Wydawnictwo AE im O. Langego we Wrocławiu: Wrocław, Poland, 2006. [Google Scholar]
- Database—Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 21 June 2022).
- IRENA—International Renewable Energy Agency. Available online: https://www.irena.org/ (accessed on 21 June 2022).
- Zeliaś, A. Taksonomiczna Analiza Przestrzennego Zróżnicowania Poziomu Życia w Polsce w Ujęciu Dynamicznym; Wydawnictwo Akademii Ekonomicznej w Krakowie: Kraków, Poland, 2000. [Google Scholar]
- Miłek, D. Spatial Differentiation in the Social and Economic Development Level in Poland. Equilib. Q. J. Econ. Econ. Policy 2018, 13, 487–507. [Google Scholar] [CrossRef]
- Gatnar, E.; Walesiak, M. Metody Statystycznej Analizy Wielowymiarowej w Badaniach Marketingowych; Wydawnictwo Akademii Ekonomicznej: Wrocław, Poland, 2004. [Google Scholar]
- Młodak, A. Analiza Taksonomiczna w Statystyce Regionalnej, 2006th ed.; Difin: Warszawa, Poland, 2006. [Google Scholar]
- Szkutnik, W.; Sączewska-Piotrowska, A.; Hadaś-Dyduch, M. Metody Taksonomiczne z Programem Statistica; Wydawnistwo Uniwersytetu Ekonomicznego w Katowicach: Katowicach, Poland, 2015. [Google Scholar]
- Stec, M. Uwarunkowania rozwojowe województw w Polsce—Analiza statystyczno-ekonometryczna. Nierówności Społeczne Wzrost Gospod. 2011, 20, 232–251. [Google Scholar]
- Wąs, A.; Krupin, V.; Kobus, P.; Witajewski-Baltvilks, J.; Jeszke, R.; Szczepański, K. Towards Climate Neutrality in Poland by 2050: Assessment of Policy Implications in the Farm Sector. Energies 2021, 14, 7595. [Google Scholar] [CrossRef]
- Marra, A.; Colantonio, E. The path to renewable energy consumption in the European Union through drivers and barriers: A panel vector autoregressive approach. Socio-Econ. Plan. Sci. 2020, 76, 100958. [Google Scholar] [CrossRef]
- Bórawski, P.; Wyszomierski, R.; Bełdycka-Bórawska, A.; Mickiewicz, B.; Kalinowska, B.; Dunn, J.W.; Rokicki, T. Development of Renewable Energy Sources in the European Union in the Context of Sustainable Development Policy. Energies 2022, 15, 1545. [Google Scholar] [CrossRef]
- Kaygusuz, K.; Yüksek, Ö.; Sari, A. Renewable Energy Sources in the European Union: Markets and Capacity. Energy Sourc. Part B Econ. Plan. Policy 2007, 2, 19–29. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J. Renewable Energy Consumption in Economic Sectors in the EU-27. The Impact on Economics, Environment and Conventional Energy Sources. A 20-Year Perspective. J. Clean. Prod. 2022, 345, 131076. [Google Scholar] [CrossRef]
- Renewable Energy Prospects for the European Union. Available online: https://www.irena.org/publications/2018/Feb/Renewable-energy-prospects-for-the-EU (accessed on 21 June 2022).
- Karabegović, I.; Doleček, V. Development and Implementation OF Renewable Energy Sources in the World and European Union. Contemp. Mater. 2015, 6, 130–148. [Google Scholar] [CrossRef]
- Rokicki, T.; Michalski, K.; Ratajczak, M.; Szczepaniuk, H.; Golonko, M. Wykorzystanie odnawialnych źródeł energii w krajach Unii Europejskiej. Rocz. Ochr. Śr. 2018, 20, 2. [Google Scholar]
- Bórawski, P.; Bełdycka-Bórawska, A.; Szymańska, E.J.; Jankowski, K.J.; Dubis, B.; Dunn, J.W. Development of renewable energy sources market and biofuels in The European Union. J. Clean. Prod. 2019, 228, 467–484. [Google Scholar] [CrossRef]
- Strielkowski, W.; Krška, Š.; Lisin, E. Energy Economics and Policy of Renewable Energy Sources in the European Union. Int. J. Energy Econ. Policy 2013, 3, 333–340. [Google Scholar]
- Smolović, J.C.; Muhadinović, M.; Radonjić, M.; Đurašković, J. How does renewable energy consumption affect economic growth in the traditional and new member states of the European Union? Energy Rep. 2020, 6, 505–513. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources. Energies 2020, 13, 913. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewski, K. The Polish Road to the New European Green Deal—Challenges and Threats to the National Energy Policy. Polityka Energ. Energy Policy J. 2020, 23, 5–18. [Google Scholar] [CrossRef]
- Wiśniewski, R.; Daniluk, P.; Kownacki, T.; Nowakowska-Krystman, A. Energy System Development Scenarios: Case of Poland. Energies 2022, 15, 2962. [Google Scholar] [CrossRef]
EU Countries | Feature | ||||||||
---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | |
2012 | |||||||||
Belgium | 18.0 | 7.09 | 4.92 | 11.34 | 7.11 | 26.7 | 51.7 | 19.3 | 2.3 |
Bulgaria | 14.0 | 15.84 | 0.65 | 15.82 | 27.24 | 16.8 | 25.2 | 0.3 | 57.6 |
Czechia | 10.2 | 12.81 | 6.25 | 11.67 | 16.25 | 6.5 | 50.6 | 16.4 | 26.6 |
Denmark | 16.5 | 25.47 | 6.28 | 38.72 | 33.20 | 70.0 | 6.8 | 23.1 | 0.2 |
Germany | 26.6 | 13.55 | 7.32 | 23.61 | 13.42 | 39.6 | 43.6 | 9.6 | 7.2 |
Estonia | 20.7 | 25.59 | 0.45 | 15.67 | 43.22 | 60.3 | 0.1 | 37.8 | 1.8 |
Ireland | 57.8 | 7.03 | 4.04 | 19.84 | 4.85 | 85.3 | 0.0 | 2.9 | 11.9 |
Greece | 21.8 | 13.74 | 0.90 | 16.36 | 24.12 | 26.7 | 23.4 | 0.7 | 49.2 |
Spain | 43.7 | 14.24 | 0.87 | 33.44 | 13.97 | 49.1 | 14.1 | 2.1 | 34.6 |
France | 15.6 | 13.24 | 7.42 | 16.55 | 16.59 | 20.5 | 11.8 | 2.9 | 64.3 |
Croatia | 34.2 | 26.76 | 1.05 | 38.76 | 36.55 | 7.7 | 0.2 | 0.8 | 91.4 |
Italy | 56.3 | 15.44 | 6.16 | 27.42 | 16.98 | 17.3 | 35.9 | 6.8 | 38.4 |
Cyprus | 100.0 | 7.11 | 0.00 | 4.93 | 21.76 | 85.0 | 9.8 | 5.2 | 0.0 |
Latvia | 99.8 | 35.71 | 4.00 | 44.88 | 47.27 | 3.5 | 0.0 | 3.9 | 92.6 |
Lithuania | 90.8 | 21.44 | 4.97 | 10.88 | 34.54 | 61.0 | 1.6 | 11.7 | 25.7 |
Luxembourg | 74.5 | 3.11 | 2.83 | 4.66 | 4.93 | 31.2 | 39.9 | 10.5 | 18.4 |
Hungary | 18.7 | 15.53 | 6.00 | 6.06 | 23.31 | 44.9 | 1.7 | 45.7 | 7.7 |
Malta | 100.0 | 2.86 | 3.22 | 1.12 | 13.40 | 0.5 | 83.5 | 16.0 | 0.0 |
Netherlands | 5.8 | 4.66 | 5.22 | 10.35 | 3.77 | 70.1 | 8.3 | 20.6 | 1.1 |
Austria | 75.3 | 32.73 | 10.03 | 67.44 | 33.08 | 8.0 | 2.0 | 9.9 | 79.9 |
Poland | 11.9 | 10.96 | 6.53 | 10.61 | 13.50 | 62.6 | 0.0 | 14.2 | 23.1 |
Portugal | 94.8 | 24.57 | 0.81 | 47.51 | 33.15 | 40.3 | 2.2 | 5.2 | 52.1 |
Romania | 19.2 | 22.83 | 4.96 | 33.57 | 25.75 | 21.8 | 0.5 | 0.5 | 77.3 |
Slovenia | 27.9 | 21.55 | 3.25 | 31.64 | 33.15 | 0.2 | 11.1 | 4.6 | 84.1 |
Slovakia | 23.0 | 10.45 | 5.60 | 20.05 | 8.80 | 0.1 | 22.0 | 9.1 | 68.8 |
Finland | 58.1 | 34.22 | 1.05 | 29.11 | 48.23 | 4.9 | 0.2 | 35.8 | 59.1 |
Sweden | 51.8 | 49.40 | 13.78 | 59.78 | 60.64 | 14.9 | 0.1 | 17.9 | 67.2 |
Arithmetic average | 44.0 | 18.1 | 4.4 | 24.1 | 24.4 | 32.4 | 16.5 | 12.4 | 38.6 |
Standard deviation | 32.12 | 11.22 | 3.23 | 17.08 | 14.82 | 27.12 | 21.45 | 11.99 | 31.99 |
Coefficient of variation | 73.07 | 62.09 | 73.67 | 70.75 | 60.75 | 83.63 | 129.77 | 97.06 | 82.84 |
2020 | |||||||||
Belgium | 29.9 | 13.00 | 11.04 | 25.12 | 8.45 | 41.4 | 49.9 | 8.2 | 0.9 |
Bulgaria | 23.8 | 23.32 | 9.10 | 23.59 | 37.18 | 16.1 | 25.2 | 1.1 | 57.6 |
Czechia | 22.1 | 17.30 | 9.38 | 14.81 | 23.54 | 7.7 | 48.2 | 19.2 | 24.9 |
Denmark | 45.6 | 31.68 | 9.70 | 65.32 | 51.07 | 66.9 | 13.9 | 19.1 | 0.1 |
Germany | 47.5 | 19.31 | 9.92 | 44.70 | 14.81 | 47.2 | 40.8 | 7.9 | 4.2 |
Estonia | 42.0 | 30.07 | 12.17 | 28.29 | 58.83 | 38.3 | 25.1 | 35.7 | 1.0 |
Ireland | 45.5 | 16.16 | 10.19 | 39.06 | 6.26 | 90.8 | 2.0 | 2.3 | 5.0 |
Greece | 64.8 | 21.75 | 5.34 | 35.86 | 31.94 | 37.7 | 30.1 | 0.9 | 31.3 |
Spain | 55.4 | 21.22 | 9.53 | 42.94 | 17.97 | 46.7 | 21.9 | 2.2 | 29.2 |
France | 22.8 | 19.11 | 9.21 | 24.82 | 23.37 | 31.5 | 21.6 | 3.3 | 43.2 |
Croatia | 62.3 | 31.02 | 6.59 | 53.82 | 36.93 | 24.6 | 3.3 | 4.2 | 67.6 |
Italy | 72.6 | 20.36 | 10.74 | 38.08 | 19.95 | 19.6 | 39.0 | 6.2 | 33.8 |
Cyprus | 96.3 | 16.88 | 7.40 | 12.04 | 37.12 | 39.5 | 57.3 | 3.2 | 0.0 |
Latvia | 99.3 | 42.13 | 6.73 | 53.36 | 57.09 | 4.3 | 0.3 | 8.6 | 86.9 |
Lithuania | 83.9 | 26.77 | 5.51 | 20.17 | 50.35 | 52.0 | 23.9 | 12.9 | 11.3 |
Luxembourg | 85.3 | 11.70 | 12.58 | 13.89 | 12.61 | 35.5 | 43.4 | 13.0 | 8.0 |
Hungary | 29.3 | 13.85 | 11.57 | 11.90 | 17.72 | 10.6 | 70.5 | 16.8 | 1.9 |
Malta | 100.0 | 10.71 | 10.59 | 9.49 | 23.03 | 0.1 | 97.6 | 2.4 | 0.0 |
Netherlands | 26.0 | 14.00 | 12.63 | 26.41 | 8.05 | 35.8 | 59.3 | 4.7 | 0.2 |
Austria | 84.9 | 36.55 | 10.28 | 78.20 | 35.00 | 15.3 | 9.7 | 6.0 | 69.1 |
Poland | 21.6 | 16.10 | 6.58 | 16.24 | 22.14 | 51.3 | 32.2 | 8.5 | 8.0 |
Portugal | 98.0 | 33.98 | 9.70 | 58.03 | 41.55 | 36.1 | 7.7 | 5.0 | 51.0 |
Romania | 25.9 | 24.48 | 8.54 | 43.37 | 25.33 | 27.1 | 12.4 | 1.5 | 59.0 |
Slovenia | 30.8 | 25.00 | 10.91 | 35.10 | 32.14 | 0.2 | 22.9 | 4.1 | 72.7 |
Slovakia | 32.3 | 17.35 | 9.26 | 23.07 | 19.43 | 0.1 | 22.5 | 9.6 | 67.9 |
Finland | 64.4 | 43.80 | 13.44 | 39.56 | 57.62 | 29.4 | 3.6 | 30.8 | 36.1 |
Sweden | 62.8 | 60.12 | 31.85 | 74.50 | 66.38 | 31.2 | 3.5 | 13.9 | 51.3 |
Arithmetic average | 54.6 | 24.4 | 10.4 | 35.2 | 31.0 | 31.0 | 29.2 | 9.3 | 30.5 |
Standard deviation | 27.38 | 11.47 | 4.79 | 19.19 | 17.06 | 21.27 | 23.61 | 8.76 | 28.32 |
Coefficient of variation | 50.11 | 47.09 | 46.11 | 54.43 | 55.12 | 68.61 | 80.90 | 94.09 | 93.00 |
2012 | 2020 | ||||
---|---|---|---|---|---|
Ranking Position | Country | Indicator Value | Ranking Position | Country | Indicator Value |
Group of countries with the highest level of RES development | |||||
di ≥ 0.189 | di ≥ 0.295 | ||||
1. | Sweden | 0.339 | 1. | Sweden | 0.459 |
2. | Austria | 0.260 | 2. | Finland | 0.359 |
3. | Denmark | 0.201 | 3. | Estonia | 0.310 |
4. | Denmark | 0.300 | |||
Group of countries with a high level of RES development | |||||
0.121 ≤ di < 0.189 | 0.224 ≤ di < 0.295 | ||||
4. | Italy | 0.167 | 5. | Austria | 0.284 |
5. | Finland | 0.167 | 6. | Portugal | 0.279 |
6. | Germany | 0.165 | 7. | Italy | 0.250 |
7. | Latvia | 0.161 | 8. | Germany | 0.247 |
8. | Lithuania | 0.152 | 9. | Latvia | 0.227 |
9. | Portugal | 0.145 | 10. | Spain | 0.226 |
10. | Hungary | 0.127 | 11. | Luxembourg | 0.226 |
11. | Czechia | 0.122 | |||
Group of countries with a low level of RES development | |||||
0.053 ≤ di < 0.121 | 0.152 ≤ di < 0.224 | ||||
12. | Estonia | 0.114 | 12. | Croatia | 0.210 |
13. | Belgium | 0.108 | 13. | Lithuania | 0.210 |
14. | Romania | 0.106 | 14. | Netherlands | 0.203 |
15. | Poland | 0.098 | 15. | Belgium | 0.198 |
16. | France | 0.097 | 16. | Slovenia | 0.197 |
17. | Slovenia | 0.095 | 17. | Hungary | 0.190 |
18. | Slovakia | 0.093 | 18. | Czechia | 0.188 |
19. | Spain | 0.091 | 19. | Romania | 0.186 |
20. | Croatia | 0.077 | 20. | Greece | 0.181 |
21. | Luxembourg | 0.076 | 21. | Ireland | 0.170 |
22. | Netherlands | 0.070 | 22. | France | 0.169 |
23. | Ireland | 0.069 | 23. | Cyprus | 0.169 |
24. | Malta | 0.066 | 24. | Bulgaria | 0.164 |
25. | Slovakia | 0.162 | |||
Group of countries with very low levels of RES development | |||||
di < 0.053 | di < 0.152 | ||||
25. | Greece | 0.049 | 26. | Poland | 0.144 |
26. | Bulgaria | 0.039 | 27. | Malta | 0.136 |
27. | Cyprus | 0.024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miłek, D.; Nowak, P.; Latosińska, J. The Development of Renewable Energy Sources in the European Union in the Light of the European Green Deal. Energies 2022, 15, 5576. https://doi.org/10.3390/en15155576
Miłek D, Nowak P, Latosińska J. The Development of Renewable Energy Sources in the European Union in the Light of the European Green Deal. Energies. 2022; 15(15):5576. https://doi.org/10.3390/en15155576
Chicago/Turabian StyleMiłek, Dorota, Paulina Nowak, and Jolanta Latosińska. 2022. "The Development of Renewable Energy Sources in the European Union in the Light of the European Green Deal" Energies 15, no. 15: 5576. https://doi.org/10.3390/en15155576
APA StyleMiłek, D., Nowak, P., & Latosińska, J. (2022). The Development of Renewable Energy Sources in the European Union in the Light of the European Green Deal. Energies, 15(15), 5576. https://doi.org/10.3390/en15155576