Simulation of the Energy Efficiency Auction Prices via the Markov Chain Monte Carlo Method †
<p>Rankings by country. Source: ACEEE (2018).</p> "> Figure 2
<p>Steps to create the mechanisms.</p> "> Figure 3
<p>Specification of the case study.</p> "> Figure 4
<p>Details of the transition from time t to time t + 1.</p> "> Figure 5
<p>Evolution from time t to time t + 1 considering DSB.</p> "> Figure 6
<p>Results of the simulation.</p> "> Figure 7
<p>Density estimated by: (<b>a</b>) Kernel method. (<b>b</b>) Gaussian mixture model.</p> "> Figure 8
<p>Histograms of the samples generated by the MCMC from the density obtained by the kernel method: (<b>a</b>) 500 iterations. (<b>b</b>) 1000 iterations. (<b>c</b>) 5000 iterations. (<b>d</b>) 10,000 iterations.</p> "> Figure 9
<p>Histograms of the samples generated by MCMC from the density obtained by the Gaussian mixture model: (<b>a</b>) 500 iterations. (<b>b</b>) 1000 iterations. (<b>c</b>) 5000 iterations. (<b>d</b>) 10,000 iterations.</p> ">
Abstract
:1. Introduction
2. Experiences of Energy Efficiency in Other Countries
2.1. Germany
2.2. Italy
2.3. United States
2.4. Overview: International Energy Efficiency
3. Demand Side Bidding—Proposal
3.1. DSB in Brazil
3.2. Operation of the DSB
4. Methodology
4.1. Estimation of the Density: The Kernel Method and Gaussian Mixture Models
4.1.1. Estimation by the Kernel Method
4.1.2. The Gaussian Mixture Model
4.2. Simulations
4.2.1. The Markov Chain
4.2.2. MCMC
4.2.3. The Metropolis—Hastings Algorithm
5. Results and Discussion
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DSB | Demand Side Bidding |
MCMC | Markov Chain Monte Carlo |
US | United States |
ACEEE | American Council for an Energy-Efficient Economy |
GE | Generated Energy |
HE | Hydroelectric |
FC | Free Consumer |
DB | Distributor |
R$ | Brazilian real |
References
- Belke, A.; Dobnik, F.; Dreger, C. Energy consumption and economic growth: New insights into the cointegration relationship. Energy Econ. 2011, 33, 782–789. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, I.; Aslan, A.; Kalyoncu, H. Energy consumption and economic growth relationship: Evidence from panel data for low and middle income countries. Energy Policy 2010, 38, 4422–4428. [Google Scholar] [CrossRef]
- Costantini, V.; Martini, C. The causality between energy consumption and economic growth: A multi-sectoral analysis using non-stationary cointegrated panel data. Energy Econ. 2010, 32, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Selvakkumaran, S.; Limmeechokchai, B. Energy security and co-benefits of energy efficiency improvement in three Asian countries. Renew. Sustain. Energy Rev. 2013, 20, 491–503. [Google Scholar] [CrossRef]
- Calili, R.F.; Souza, R.C.; Galli, A.; Armstrong, M.; Marcato, A.L.M. Estimating the cost savings and avoided CO2 emissions in Brazil by implementing energy efficient policies. Energy Policy 2014, 67, 4–15. [Google Scholar] [CrossRef]
- Pina, A.; Silva, C.; Ferrão, P. The impact of demand side management strategies in the penetration of renewable electricity. Energy 2012, 41, 128–137. [Google Scholar] [CrossRef]
- Ren, J.; Sovacool, B.K. Quantifying, measuring, and strategizing energy security: Determining the most meaningful dimensions and metrics. Energy 2014, 76, 838–849. [Google Scholar] [CrossRef]
- Sharifuddin, S. Methodology for quantitatively assessing the energy security of Malaysia and other southeast Asian countries. Energy Policy 2014, 65, 574–582. [Google Scholar] [CrossRef]
- Bayod-Rújula, A.A. Future development of the electricity systems with distributed generation. Energy 2009, 34, 377–383. [Google Scholar] [CrossRef]
- Costello, A.; Abbas, M.; Allen, A.; Ball, S.; Bell, S.; Bellamy, R.; Friel, S.; Groce, N.; Johnson, A.; Kett, M.; et al. Managing the health effects of climate change: Lancet and University College London Institute for Global Health Commission. Lancet 2009, 373, 1693–1733. [Google Scholar] [CrossRef]
- Camioto, F.D.C.; Mariano, E.B.; Santana, N.B.; Yamashita, B.D.; Rebelatto, D.A.D.N. Renewable and sustainable energy efficiency: An analysis of Latin American countries. Environ. Prog. Sustain. Energy 2018, 37, 2116–2123. [Google Scholar] [CrossRef]
- Silva, C.; Nasirov, S. Chile: Paving the way for sustainable energy planning. Energy Sources Part B Econ. Plan. Policy 2017, 12, 56–62. [Google Scholar] [CrossRef]
- Camioto, F.d.C.; Rebelatto, D.A.d.N.; Rocha, R.T. Energy efficiency analysis of BRICS countries: A study using Data Envelopment Analysis. Gestão Produção 2016, 23, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Jakob, M. Ecuador’s climate targets: A credible entry point to a low-carbon economy? Energy Sustain. Dev. 2017, 39, 91–100. [Google Scholar] [CrossRef]
- Hakim, P. Brasil: Decisiones de una nueva potencia. Política Exter. 2010, 24, 86–99. [Google Scholar]
- Mardani, A.; Zavadskas, E.K.; Streimikiene, D.; Jusoh, A.; Khoshnoudi, M. A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renew. Sustain. Energy Rev. 2017, 70, 1298–1322. [Google Scholar] [CrossRef]
- Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D. Energy saving and energy efficiency concepts for policy making. Energy Policy 2009, 37, 4787–4796. [Google Scholar] [CrossRef]
- Duzgun, B.; Komurgoz, G. Turkey’s energy efficiency assessment: White Certificates Systems and their applicability in Turkey. Energy Policy 2014, 65, 465–474. [Google Scholar] [CrossRef]
- Pudjianto, D.; Ramsay, C.; Strbac, G. Virtual power plant and system integration of distributed energy resources. IET Renew. Power Gener. 2007, 1, 10–16. [Google Scholar] [CrossRef]
- Van Summeren, L.F.; Wieczorek, A.J.; Bombaerts, G.J.; Verbong, G.P. Community energy meets smart grids: Reviewing goals, structure, and roles in Virtual Power Plants in Ireland, Belgium and the Netherlands. Energy Res. Soc. Sci. 2020, 63, 101415. [Google Scholar] [CrossRef]
- Wainstein, M.E.; Dargaville, R.; Bumpus, A. Social virtual energy networks: Exploring innovative business models of prosumer aggregation with virtual power plants. In Proceedings of the 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 23–26 April 2017; pp. 1–5. [Google Scholar]
- Garcia, A.G.P. Leilão de eficiência energética no Brasil. 2008. Available online: http://www.ppe.ufrj.br/images/publicações/doutorado/Agenor_Gomes_Pinto_Garcia.pdf (accessed on 25 May 2020).
- Calili, R.F. Políticas de Eficiência Energética no Brasil: Uma abordagem em um Ambiente Econômico sob incerteza. Available online: http://www2.dbd.puc-rio.br/pergamum/tesesabertas/0912939_2013_completo.pdf (accessed on 25 May 2020).
- IRENA. Renewable Energy Auctions in Developing Countries. 2013. Available online: https://www.irena.org/publications/2013/Jun/Renewable-Energy-Auctions-in-Developing-Countries (accessed on 1 July 2020).
- Gonzales, J.; Calili, R.; Souza, R.; Coelho da Silva, F. Simulation of the energy efficiency auction prices in Brazil. Renew. Energy Power Qual. J. 2016, 1, 574–579. [Google Scholar] [CrossRef] [Green Version]
- IRENA. Renewable Energy Auctions: Status and Trends beyond Price. 2019. Available online: https://www.irena.org/publications/2019/Dec/Renewable-energy-auctions-Status-and-trends-beyond-price (accessed on 2 July 2020).
- Martín, H.; Coronas, S.; Alonso, À.; de la Hoz, J.; Matas, J. Renewable Energy Auction Prices: Near Subsidy-Free? Energies 2020, 13, 3383. [Google Scholar]
- Chen, Y.C. A Tutorial on Kernel Density Estimation and Recent Advances. Biostat. Epidemiol. 2017, 1. [Google Scholar] [CrossRef]
- Chen, T.; Morris, J.; Martin, E. Probability Density Estimation Via an Infinite Gaussian Mixture Model: Application to Statistical Process Monitoring. J. R. Stat. Soc. Ser. C 2006, 55, 699–715. [Google Scholar] [CrossRef] [Green Version]
- Gamerman, D.; Lopes, H.F. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Wang, Y.; Brown, M.A. Policy drivers for improving electricity end-use efficiency in the USA: An economic—Engineering analysis. Energy Effic. 2014, 7, 517–546. [Google Scholar] [CrossRef]
- Clean Energy Transitions Programme 2019, IEA. 2020. Available online: https://www.iea.org/reports/clean-energy-transitions-programme-2019 (accessed on 10 July 2020).
- Ringel, M. Energy efficiency policy governance in a multi-level administration structure—Evidence from Germany. Energy Effic. 2017, 10, 753–776. [Google Scholar] [CrossRef]
- Bundesministerium für Wirtschaft und Energie. 2014. Available online: https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/nationaler-aktionsplan-energieeffizienz-nape.html (accessed on 1 May 2020).
- The German Government’s Climate Action Programme 2020. 2014. Available online: https://www.bmu.de/fileadmin/Daten_BMU/Pools/Broschueren/aktionsprogramm_klimaschutz_2020_broschuere_en_bf.pdf (accessed on 1 July 2020).
- The 2018 State Energy Efficiency Scorecard. 2018. Available online: https://www.aceee.org/sites/default/files/publications/researchreports/i1801.pdf (accessed on 1 May 2020).
- Directorate-General for Energy (European Commission). Good Practice Inenergy Efficiency—For a Sustainable, Safer and More Competitive Europe. 2017. Available online: https://doi.org/10.2833/75367 (accessed on 1 May 2020).
- Di Santo, D.; Biele, E.; Forni, D. White Certificates as a Tool to Promote Energy Efficiency in Industry. Available online: https://www.dariodisanto.com/wp-content/uploads/2018/07/1-017-18_Di_Santo.pdf (accessed on 25 May 2020).
- Di Santo, D.; Tomassetti, G.; Biele, E.; D’Ambrosio, S. White certificates in industry: The Italian experience. In Proceedings of the IEPPEC Conference, Berlin, Germany, 9–11 September 2014. [Google Scholar]
- Malinauskaite, J.; Jouhara, H.; Ahmad, L.; Milani, M.; Montorsi, L.; Venturelli, M. Energy efficiency in industry: EU and national policies in Italy and the UK. Energy 2019, 172, 255–269. [Google Scholar] [CrossRef]
- Doe, D. Quadrennial Energy Review Transforming the Nation’s Electricity System: The Second Installment of The QER. 2017. Available online: https://www.energy.gov/policy/initiatives/quadrennial-energy-review-qer/quadrennial-energy-review-second-installment (accessed on 10 July 2020).
- MME. Lei 10.295/Outubro—D.O.U. Brasilia, DF. 2001. Available online: http://www.mme.gov.br/ (accessed on 10 July 2020).
- Meyabadi, A.F.; Deihimi, M.H. A review of demand-side management: Reconsidering theoretical framework. Renew. Sustain. Energy Rev. 2017, 80, 367–379. [Google Scholar] [CrossRef]
- Kambil, A.; Van Heck, E. Making Markets: How Firms Can Design and Profit from Online Auctions and Exchanges; Harvard Business School Press: Brighton, MA, USA, 2002. [Google Scholar]
- Bompard, E.; Ma, Y.; Napoli, R.; Abrate, G.; Ragazzi, E. The impacts of price responsiveness on strategic equilibrium in competitive electricity markets. Int. J. Electr. Power Energy Syst. 2007, 29, 397–407. [Google Scholar] [CrossRef]
- Mora, D.; Carpino, C.; De Simone, M. Energy consumption of residential buildings and occupancy profiles. A case study in Mediterranean climatic conditions. Energy Effic. 2018, 11, 121–145. [Google Scholar] [CrossRef]
- Oh, H.; Thomas, R.J. Demand-side bidding agents: Modeling and simulation. IEEE Trans. Power Syst. 2008, 23, 1050–1056. [Google Scholar]
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Escobar, M.; West, M. Bayesian Density Estimation and Inference Using Mixtures. J. Am. Stat. Assoc. 1994, 90. [Google Scholar] [CrossRef]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 1977, 39, 1–38. [Google Scholar]
- Metropolis, N.; Ulam, S. The monte carlo method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.P.; Casella, G.; Casella, G. Introducing Monte Carlo Methods with r; Springer: Berlin, Germany, 2010; Volume 18. [Google Scholar]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Bertoldi, P.; Rezessy, S. Tradable white certificate schemes: Fundamental concepts. Energy Effic. 2008, 1, 237–255. [Google Scholar] [CrossRef]
Data | Sale Price—(R$/MWh) | Total |
---|---|---|
16.12.2005–06.06.2014 | 79.24–223.01 | 322 |
Statistics | Price |
---|---|
Min. | 79.24 |
Median | 165.92 |
Mean | 162.08 |
Max. | 223.01 |
Std. Deviation | 38.02 |
skewness | −0.10 |
kurtosis | −1.63 |
Class | Frequency | Probability | Percentage |
---|---|---|---|
79.24 | 1 | 0.0031 | 0.31% |
95 | 2 | 0.0062 | 0.62% |
110 | 3 | 0.0093 | 0.93% |
115 | 23 | 0.0714 | 7.14% |
120 | 21 | 0.0652 | 6.52% |
125 | 67 | 0.2081 | 20.81% |
130 | 5 | 0.0155 | 1.55% |
135 | 0 | 0.0000 | 0.00% |
140 | 4 | 0.0124 | 1.24% |
170 | 43 | 0.1335 | 13.35% |
200 | 65 | 0.2019 | 20.19% |
224 | 88 | 0.2733 | 27.33% |
322 | 1 | 100% |
Statistics | 500 | 1000 | 5000 | 10,000 |
---|---|---|---|---|
Min. | 79.61 | 60.59 | 74.69 | 57.68 |
1st Qu. | 124.31 | 124.39 | 127.73 | 124.93 |
Mean | 158.68 | 161.66 | 163.33 | 162.74 |
3rd Qu. | 195.67 | 197.63 | 197.18 | 197.43 |
Max. | 228.92 | 247.32 | 235.08 | 249.29 |
Std. Deviation | 39.19 | 39.15 | 38.53 | 38.48 |
Coefficient of variation | 0.247 | 0.242 | 0.236 | 0.236 |
Statistics | 500 | 1000 | 5000 | 10,000 |
---|---|---|---|---|
Min. | 92.31 | 87.69 | 83.2 | 72.01 |
1st Qu. | 124.78 | 124.37 | 124.5 | 124.93 |
Mean | 158.39 | 158.61 | 160.1 | 160.73 |
3rd Qu. | 189.17 | 191.98 | 194.8 | 194.09 |
Max. | 231.04 | 231.85 | 246.9 | 243.73 |
Std. Deviation | 36.23 | 36.69 | 37.66 | 37.23 |
Coefficient of variation | 0.229 | 0.231 | 0.235 | 0.231 |
Size of Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
500 | 28% | 29% | 32% | 26% | 35% | 28% | 35% | 28% | 30% | 28% |
1000 | 26% | 31% | 29% | 31% | 28% | 31% | 32% | 30% | 26% | 33% |
5000 | 30% | 30% | 31% | 31% | 30% | 31% | 29% | 29% | 30% | 30% |
10,000 | 31% | 32% | 30% | 30% | 32% | 31% | 29% | 29% | 31% | 32% |
Size of Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
500 | 35% | 32% | 34% | 40% | 38% | 36% | 36% | 36% | 29% | 37% |
1000 | 35% | 35% | 36% | 33% | 36% | 36% | 35% | 34% | 38% | 36% |
5000 | 38% | 37% | 34% | 40% | 35% | 36% | 38% | 37% | 36% | 36% |
10,000 | 38% | 36% | 38% | 36% | 38% | 36% | 37% | 36% | 36% | 37% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Gonzales, J.L.; Castro Souza, R.; Leite Coelho da Silva, F.; Carbo-Bustinza, N.; Ibacache-Pulgar, G.; Calili, R.F. Simulation of the Energy Efficiency Auction Prices via the Markov Chain Monte Carlo Method . Energies 2020, 13, 4544. https://doi.org/10.3390/en13174544
López-Gonzales JL, Castro Souza R, Leite Coelho da Silva F, Carbo-Bustinza N, Ibacache-Pulgar G, Calili RF. Simulation of the Energy Efficiency Auction Prices via the Markov Chain Monte Carlo Method . Energies. 2020; 13(17):4544. https://doi.org/10.3390/en13174544
Chicago/Turabian StyleLópez-Gonzales, Javier Linkolk, Reinaldo Castro Souza, Felipe Leite Coelho da Silva, Natalí Carbo-Bustinza, Germán Ibacache-Pulgar, and Rodrigo Flora Calili. 2020. "Simulation of the Energy Efficiency Auction Prices via the Markov Chain Monte Carlo Method " Energies 13, no. 17: 4544. https://doi.org/10.3390/en13174544
APA StyleLópez-Gonzales, J. L., Castro Souza, R., Leite Coelho da Silva, F., Carbo-Bustinza, N., Ibacache-Pulgar, G., & Calili, R. F. (2020). Simulation of the Energy Efficiency Auction Prices via the Markov Chain Monte Carlo Method . Energies, 13(17), 4544. https://doi.org/10.3390/en13174544