A Numerical Study of Axisymmetric Wave Propagation in Buried Fluid-Filled Pipes for Optimizing the Vibro-Acoustic Technique When Locating Gas Pipelines
<p>The coordinate system for a fluid-filled pipe surrounded by infinite medium.</p> "> Figure 2
<p>The wave speed of <span class="html-italic">s</span> = 1 waves: (<b>a</b>) gas-dominated wave in a buried gas pipe system; and (<b>b</b>) water-dominated wave in a buried water pipe system.</p> "> Figure 3
<p>Attenuation of <span class="html-italic">s</span> = 1 waves: (<b>a</b>) gas-dominated wave in a buried gas pipe system; and (<b>b</b>) water-dominated wave in a buried water pipe system.</p> "> Figure 4
<p>The cross section of a buried fluid-filled pipe shown in <a href="#energies-12-03707-f001" class="html-fig">Figure 1</a>, rotated by <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>90</mn> </mrow> <mo>°</mo> </msup> </mrow> </semantics></math>.</p> "> Figure 5
<p>Displacement profiles in radial direction resulting from <span class="html-italic">s</span> = 1 waves, for the pipes buried in soil A: (<b>a</b>) cast iron water pipe; (<b>b</b>) PVC water pipe; (<b>c</b>) cast iron gas pipe; and (<b>d</b>) PVC gas pipe.</p> "> Figure 6
<p>Displacement profiles in radial direction resulting from <span class="html-italic">s</span> = 1 waves, for the pipes buried in soil B: (<b>a</b>) cast iron water pipe; (<b>b</b>) PVC water pipe; (<b>c</b>) cast iron gas pipe; and (<b>d</b>) PVC gas pipe.</p> "> Figure 7
<p>The amplitudes of effective radiation coefficients (ERCs): (<b>a</b>) in space domain with frequency at 400 Hz; and (<b>b</b>) in frequency domain with <span class="html-italic">r</span> = 1.09.</p> "> Figure 8
<p>Displacement profiles in radial direction resulting from <span class="html-italic">s</span> = 2 waves, for gas pipes buried in soil B: (<b>a</b>) cast iron pipe; and (<b>b</b>) PVC pipe.</p> "> Figure 9
<p>Displacement profiles in radial direction resulting from <span class="html-italic">s</span> = 1 and <span class="html-italic">s</span> = 2 waves, normalized by <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi mathvariant="normal">f</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, for buried gas pipes in soil B: (<b>a</b>) cast iron pipe; and (<b>b</b>) PVC pipe.</p> ">
Abstract
:1. Introduction
2. Theory
2.1. Model Introduction and Nomenclature
2.2. The Expressions of Axisymmetric Waves
2.3. Equations of the Radial Displacement Distribution in Radial Direction
3. Numerical Results and Analysis
3.1. Characteristics of the s = 1 Wave in Buried Gas Pipes versus Buried Water Pipes
3.2. Displacement Profiles from the s = 1 Wave (Gas-Dominated Wave) for Buried Gas Pipe: With a Buried Water Pipe as a Reference
3.2.1. The Effect from Pipe Material
3.2.2. The Effect from Soil Property
3.2.3. The Difference between Gas Pipes and Water Pipes
3.3. Displacement Profiles from s = 2 (Shell-Dominated Wave) for Buried Gas Pipes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Xu, J.; Lian, Z.; Hu, J.; Luo, M. Prediction of the Maximum Erosion Rate of Gas–Solid Two-Phase Flow Pipelines. Energies 2018, 11, 2773. [Google Scholar] [CrossRef]
- Meng, L.; Yuxing, L.; Wuchang, W.; Juntao, F. Experimental study on leak detection and location for gas pipeline based on acoustic method. J. Loss Prev. Process Ind. 2012, 25, 90–102. [Google Scholar] [CrossRef]
- Xia, M.; Zhang, H. Stress and Deformation Analysis of Buried Gas Pipelines Subjected to Buoyancy in Liquefaction Zones. Energies 2018, 11, 2334. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Yan, D.; Wang, P.; Huang, Q.; Zhao, X.; Cheng, Y.; Zhou, Q.; Xiang, N.; Dong, T. Leak detection and location in gas pipelines by extraction of cross spectrum of single non-dispersive guided wave modes. J. Loss Prev. Process Ind. 2016, 44, 255–262. [Google Scholar] [CrossRef]
- Yazdekhasti, S.; Piratla, K.R.; Atamturktur, S.; Khan, A. Experimental evaluation of a vibration-based leak detection technique for water pipelines. Struct. Infrastruct. Eng. 2018, 14, 46–55. [Google Scholar] [CrossRef]
- Muggleton, J.M.; Rustighi, E. ‘Mapping the Underworld’: Recent developments in vibro-acoustic techniques to locate buried infrastructure. Géotech. Lett. 2013, 3, 137–141. [Google Scholar] [CrossRef]
- Royal, A.C.D.; Rogers, C.D.F.; Atkins, P.R.; Brennan, M.J.; Chapman, D.N.; Cohn, A.G.; Curioni, G.; Foo, K.Y.; Goddard, K.; Lewin, P.L. Mapping the underworld: Location phase II—latest developments. In Proceedings of the International No-Dig 2010 28th International Conference and Exhibition, Singapore, 8–10 November 2010. [Google Scholar]
- Martini, A.; Troncossi, M.; Rivola, A. Vibroacoustic measurements for detecting water leaks in buried small-diameter plastic pipes. J. Pipeline Syst. Eng. Pract. 2017, 8, 4017022. [Google Scholar] [CrossRef]
- Martini, A.; Rivola, A.; Troncossi, M. Autocorrelation Analysis of Vibro-Acoustic Signals Measured in a Test Field for Water Leak Detection. Appl. Sci. 2018, 8, 2450. [Google Scholar] [CrossRef]
- Gazis, D.C. Three-Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation. J. Acoust. Soc. Am. 1959, 31, 568–573. [Google Scholar] [CrossRef]
- Gazis, D.C. Three-Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results. J. Acoust. Soc. Am. 1959, 31, 573–578. [Google Scholar] [CrossRef]
- Fuller, C.R.; Fahy, F.J. Characteristics of wave propagation and energy distributions in cylindrical elastic shells filled with fluid. J. Sound Vib. 1982, 81, 501–518. [Google Scholar] [CrossRef]
- Fuller, C.R. Monopole excitation of vibrations in an infinite cylindrical elastic shell filled with fluid. J. Sound Vib. 1984, 96, 101–110. [Google Scholar] [CrossRef]
- Fuller, C.R. Radiation of sound from an infinite cylindrical elastic shell excited by an internal monopole source. J. Sound Vib. 1986, 109, 259–275. [Google Scholar] [CrossRef]
- Pinnington, R.J.; Briscoe, A.R. Externally applied sensor for axisymmetric waves in a fluid filled pipe. J. Sound Vib. 1994, 173, 503–516. [Google Scholar] [CrossRef]
- Sinha, B.K.; Plona, T.J.; Kostek, S.; Chang, S. Axisymmetric wave propagation in fluid-loaded cylindrical shells. I: Theory. J. Acoust. Soc. Am. 1992, 92, 1132–1143. [Google Scholar] [CrossRef]
- Plona, T.J.; Sinha, B.K.; Kostek, S.; Chang, S. Axisymmetric wave propagation in fluid-loaded cylindrical shells. II: Theory versus experiment. J. Acoust. Soc. Am. 1992, 92, 1144–1155. [Google Scholar] [CrossRef]
- Long, R.; Cawley, P.; Lowe, M. Acoustic wave propagation in buried iron water pipes. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2003, 459, 2749–2770. [Google Scholar] [CrossRef]
- Long, R.; Lowe, M.; Cawley, P. Attenuation characteristics of the fundamental modes that propagate in buried iron water pipes. Ultrasonics 2003, 41, 509–519. [Google Scholar] [CrossRef]
- Muggleton, J.M.; Brennan, M.J.; Pinnington, R.J. Wavenumber prediction of waves in buried pipes for water leak detection. J. Sound Vib. 2002, 249, 939–954. [Google Scholar] [CrossRef]
- Muggleton, J.M.; Yan, J. Wavenumber prediction and measurement of axisymmetric waves in buried fluid-filled pipes: Inclusion of shear coupling at a lubricated pipe/soil interface. J. Sound Vib. 2013, 332, 1216–1230. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Sui, F.; Muggleton, J.M.; Yang, J. Simplified dispersion relationships for fluid-dominated axisymmetric wave motion in buried fluid-filled pipes. J. Sound Vib. 2016, 375, 386–402. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y. Theoretical and experimental investigation into structural and fluid motions at low frequencies in water distribution pipes. Mech. Syst. Signal Process. 2017, 90, 126–140. [Google Scholar] [CrossRef]
- Muggleton, J.M.; Brennan, M.J. The design and instrumentation of an experimental rig to investigate acoustic methods for the detection and location of underground piping systems. Appl. Acoust. 2008, 69, 1101–1107. [Google Scholar] [CrossRef]
- Muggleton, J.M.; Brennan, M.J.; Gao, Y. Determining the location of buried plastic water pipes from measurements of ground surface vibration. J. Appl. Geophys. 2011, 75, 54–61. [Google Scholar] [CrossRef]
- Jette, A.N.; Parker, J.G. Surface displacements accompanying the propagation of acoustic waves within an underground pipe. J. Sound Vib. 1980, 69, 265–274. [Google Scholar] [CrossRef]
- Li, S.; Cheng, N.; Wang, P.; Yan, D.; Wang, P.; Li, Y.; Zhao, X.; Wang, P. Extraction of single non-dispersive mode in leakage acoustic vibrations for improving leak detection in gas pipelines. J. Loss Prev. Process Ind. 2016, 41, 77–86. [Google Scholar] [CrossRef]
- Graff, K.F. Wave Motion in Elastic Solids; Dover Publications Inc.: New York, NY, USA, 1991. [Google Scholar]
- Muggleton, J.M.; Yan, J. Wavenumber prediction and measurement of axisymmetric waves in buried fluid-filled pipes: Inclusion of shear coupling at a lubricated pipe/soil interface. J. Sound Vib. 2014, 332, 1216–1230, Erratum in 2014, 333, 1855–1856. [Google Scholar] [CrossRef]
- Gao, Y.; Muggleton, J.M.; Liu, Y.; Rustighi, E. An analytical model of ground surface vibration due to axisymmetric wave motion in buried fluid-filled pipes. J. Sound Vib. 2017, 395, 142–159. [Google Scholar] [CrossRef] [Green Version]
- Leissa, A.W. Vibration of Shells; Scientific and Technical Information Office, NASA: Washington, DC, USA, 1973.
- Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. (Eds.) Fundamentals of acoustics. In Fundamentals of Acoustics, 4th ed.; Wiley-VCH: Weinheim, Germany, 1999; p. 560. ISBN 0-471-84789-5. [Google Scholar]
Properties | Cast Iron | PVC | Soil A | Soil B | Gas | Water |
---|---|---|---|---|---|---|
Density () | 7100 | 2000 | 2000 | 2000 | 1.290 | 1000 |
Young’s modulus () | 1.000 × 1011 | 5.000 × 109 | - | - | - | - |
Poisson’s ratio | 0.290 | 0.400 | - | - | - | - |
Bulk’s modulus () | - | - | 5.300 × 107 | 4.500 × 109 | 1.490 × 105 | 2.250 × 109 |
Shear modulus () | - | - | 2.000 × 107 | 1.800 × 108 | - | - |
Material loss factor | 0.001 | 0.065 | - | - | - | - |
Shell compressional wave speed (m/s) | 3922 | 1725 | - | - | - | - |
Compressional (P) wave speed (m/s) | - | - | 200 | 1540 | 340 | 1500 |
Shear (S) wave speed (m/s) | - | - | 100 | 300 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Habibi, D.; Chai, D.; Wang, X.; Chen, H. A Numerical Study of Axisymmetric Wave Propagation in Buried Fluid-Filled Pipes for Optimizing the Vibro-Acoustic Technique When Locating Gas Pipelines. Energies 2019, 12, 3707. https://doi.org/10.3390/en12193707
Liu Y, Habibi D, Chai D, Wang X, Chen H. A Numerical Study of Axisymmetric Wave Propagation in Buried Fluid-Filled Pipes for Optimizing the Vibro-Acoustic Technique When Locating Gas Pipelines. Energies. 2019; 12(19):3707. https://doi.org/10.3390/en12193707
Chicago/Turabian StyleLiu, Ying, Daryoush Habibi, Douglas Chai, Xiuming Wang, and Hao Chen. 2019. "A Numerical Study of Axisymmetric Wave Propagation in Buried Fluid-Filled Pipes for Optimizing the Vibro-Acoustic Technique When Locating Gas Pipelines" Energies 12, no. 19: 3707. https://doi.org/10.3390/en12193707
APA StyleLiu, Y., Habibi, D., Chai, D., Wang, X., & Chen, H. (2019). A Numerical Study of Axisymmetric Wave Propagation in Buried Fluid-Filled Pipes for Optimizing the Vibro-Acoustic Technique When Locating Gas Pipelines. Energies, 12(19), 3707. https://doi.org/10.3390/en12193707