Secure Load Frequency Control of Smart Grids under Deception Attack: A Piecewise Delay Approach
<p>The framework of network-based LFC of <span class="html-italic">i</span>th area power system.</p> "> Figure 2
<p>Frequency deviation of three areas without secure control scheme.</p> "> Figure 3
<p>Frequency deviation of three areas with secure control scheme.</p> "> Figure 4
<p>The evolution of <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 5
<p>Deception attack <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mi>v</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Preliminaries
2.1. Multi-Area Power Systems in Smart Grid
2.2. LFC under Corrupted Network Communication
3. Main Results
3.1. Stability Analysis
3.2. Networked Load Frequency Controller Design
4. A Case Study
- Area 1:
- , , , , , .
- Area 2:
- , , , , , .
- Area 3:
- , , , , , .
Algorithm 1 Output feedback PI load frequency controller design for three-area power systems. |
|
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Singh, V.P.; Kishor, N.; Samuel, P. Distributed multi-agent system-based load frequency control for multi-area power system in smart grid. IEEE Trans. Ind. Electron. 2017, 64, 5151–5160. [Google Scholar] [CrossRef]
- Elgerd, O.; Fosha, C. The research for multi-area frequency control problem. IEEE Trans. PAS Power Appar Syst. 1970, 89, 551–556. [Google Scholar]
- Talaq, J.; Al-Basri, F. Adaptive fuzzy gain scheduling for load frequency control. IEEE Trans. Power Syst. 1999, 14, 145–150. [Google Scholar] [CrossRef]
- Rerkpreedapong, D.; Hasanovic, A.; Feliachi, A. Robust load frequency control using genetic algorithms and linear matrix inequalities. IEEE Trans. Power Syst. 2003, 18, 855–861. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, Z.; Tang, Y.; Yan, J.; He, H.; Wu, Y. Load frequency control in isolated micro-grids with electrical vehicles based on multivariable generalized predictive theory. Energies 2015, 8, 2145–2164. [Google Scholar] [CrossRef]
- Liao, K.; Xu, Y. A robust load frequency control scheme for power systems based on second-order sliding mode and extended disturbance observer. IEEE Trans. Ind. Inform. 2018, 14, 3076–3086. [Google Scholar] [CrossRef]
- Topno, P.N.; Chanana, S. Load frequency control of a two-area multi-source power system using a tilt integral derivative controller. J. Vib. Control 2018, 24, 110–125. [Google Scholar] [CrossRef]
- Khooban, M.H.; Niknam, T.; Shasadeghi, M.; Dragicevic, T.; Blaabjerg, F. Load frequency control in microgrids based on a stochastic noninteger controller. IEEE Trans. Sustain. Energy 2018, 9, 853–861. [Google Scholar] [CrossRef]
- Charles, K.; Urasaki, N.; Senjyu, T.; Elsayed Lotfy, M.; Liu, L. Robust load frequency control schemes in power system using optimized PID and model predictive controllers. Energies 2018, 11, 3070. [Google Scholar] [CrossRef]
- Walsh, G.C.; Ye, H.; Bushnell, L.G. Stability analysis of networked control systems. IEEE Trans. Control Syst. Technol. 2002, 10, 438–446. [Google Scholar] [CrossRef]
- Yue, D.; Han, Q.L.; Peng, C. State feedback controller design of networked control systems. In Proceedings of the 2004 IEEE International Conference on Control Applications; IEEE: Piscataway Township, NJ, USA, 2004; Volume 1, pp. 242–247. [Google Scholar]
- Zhang, X.M.; Han, Q.L.; Yu, X. Survey on recent advances in networked control systems. IEEE Trans. Ind. Inform. 2016, 12, 1740–1752. [Google Scholar] [CrossRef]
- Ge, X.; Yang, F.; Han, Q.L. Distributed networked control systems: A brief overview. Inf. Sci. 2017, 380, 117–131. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, Y.; Zhang, B. Event-triggered network-based state observer design of positive systems. Inf. Sci. 2018, 469, 30–43. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, Y.; Wang, J.; Chen, H. A new delay-compensation scheme for networked control systems in controller area networks. IEEE Trans. Ind. Electron. 2018, 65, 7239–7247. [Google Scholar] [CrossRef]
- He, Y.; Wu, M.; She, J.H.; Liu, G.P. Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties. IEEE Trans. Autom. Control 2004, 49, 828–832. [Google Scholar] [CrossRef]
- Shustin, E.; Fridman, E. On delay-derivative-dependent stability of systems with fast-varying delays. Automatica 2007, 43, 1649–1655. [Google Scholar] [CrossRef]
- Yue, D.; Tian, E.; Zhang, Y. A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay. Int. J. Robust Nonlinear Control 2009, 19, 1493–1518. [Google Scholar] [CrossRef]
- Yue, D. Robust stabilization of uncertain systems with unknown input delay. Automatica 2004, 40, 331–336. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, Z.; Ren, K. Modeling load redistribution attacks in power systems. IEEE Trans. Smart Grid 2011, 2, 382–390. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z. Local load redistribution attacks in power systems with incomplete network information. IEEE Trans. Smart Grid 2014, 5, 1665–1676. [Google Scholar] [CrossRef]
- Sargolzaei, A.; Yen, K.K.; Abdelghani, M.N. Preventing time-delay switch attack on load frequency control in distributed power systems. IEEE Trans. Smart Grid 2016, 7, 1176–1185. [Google Scholar] [CrossRef]
- Peng, C.; Li, J.; Fei, M. Resilient Event-Triggering H∞ Load Frequency Control for Multi-Area Power Systems With Energy-Limited DoS Attacks. IEEE Trans. Power Syst. 2017, 32, 4110–4118. [Google Scholar] [CrossRef]
- Wu, Y.; Wei, Z.; Weng, J.; Li, X.; Deng, R.H. Resonance attacks on load frequency control of smart grids. IEEE Trans. Smart Grid 2018, 9, 4490–4502. [Google Scholar] [CrossRef]
- Dagoumas, A. Assessing the Impact of Cybersecurity Attacks on Power Systems. Energies 2019, 12, 725. [Google Scholar] [CrossRef]
- Xiao, S.; Han, Q.L.; Ge, X.; Zhang, Y. Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks. IEEE Trans. Cybern. 2019, 1–10. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, J. Delay-distribution-dependent load frequency control of power systems with probabilistic interval delays. IEEE Trans. Power Syst. 2015, 31, 3309–3317. [Google Scholar] [CrossRef]
- Han, Q.L. Absolute stability of time-delay systems with sector-bounded nonlinearity. Automatica 2005, 41, 2171–2176. [Google Scholar] [CrossRef]
- Sanchez, E.N.; Perez, J.P. Input-to-state stability (ISS) analysis for dynamic neural networks. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1999, 46, 1395–1398. [Google Scholar] [CrossRef]
- Crusius, C.A.; Trofino, A. Sufficient LMI conditions for output feedback control problems. IEEE Trans. Autom. Control 1999, 44, 1053–1057. [Google Scholar] [CrossRef]
- Wen, S.; Yu, X.; Zeng, Z.; Wang, J. Event-triggering load frequency control for multiarea power systems with communication delays. IEEE Trans. Ind. Electron. 2016, 63, 1308–1317. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Yuan, J.; Wang, N.; Zhang, Z.; Wen, H. Secure Load Frequency Control of Smart Grids under Deception Attack: A Piecewise Delay Approach. Energies 2019, 12, 2266. https://doi.org/10.3390/en12122266
Zhao F, Yuan J, Wang N, Zhang Z, Wen H. Secure Load Frequency Control of Smart Grids under Deception Attack: A Piecewise Delay Approach. Energies. 2019; 12(12):2266. https://doi.org/10.3390/en12122266
Chicago/Turabian StyleZhao, Fei, Jinsha Yuan, Ning Wang, Zhang Zhang, and Helong Wen. 2019. "Secure Load Frequency Control of Smart Grids under Deception Attack: A Piecewise Delay Approach" Energies 12, no. 12: 2266. https://doi.org/10.3390/en12122266