An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues
<p>The interrelations between sustainability dimensions and decision-making in the energy sector (prepared according to Meyar-Naimi, Vaez-Zadeh [<a href="#B2-energies-11-02754" class="html-bibr">2</a>]).</p> "> Figure 2
<p>The logical scheme of the research.</p> "> Figure 3
<p>The publications on the topic “sustainable energy”, 1990–2017.</p> "> Figure 4
<p>The publications on the topic of “multi-criteria decision making”, 1990–2017.</p> "> Figure 5
<p>The publications on the topics of “multi-criteria decision making” and “sustainable energy”, 1990–2017.</p> "> Figure 6
<p>The publications by country on the topics of “multi-criteria decision making” and of “sustainable energy”, 1990–2017. Note: The figure does not represent countries, which have less than 10 publications.</p> "> Figure 7
<p>The publications on the topics of “multi-criteria decision making” and “sustainable energy” in the Energy Fuels Web of Science Category, 2004–2017.</p> ">
Abstract
:1. Introduction
2. MCDM in Solving Energy Sustainability Issues
3. Detailed Analysis of Articles Dealing with Sustainable Energy Development Decision-Making Issues
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, J.J.; Jing, Y.Y.; Zhang, C.F.; Zhao, J.H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Meyar-Naimi, H.; Vaez-Zadeh, S. Developing a DSR-HNS Policy Making Framework for Electric Energy Systems. Energy Policy 2012, 42, 616–627. [Google Scholar] [CrossRef]
- Streimikiene, D.; Siksnelyte, I. Sustainability Assessment of Electricity Market Models in Selected Developed World Countries. Renew. Sustain. Energy Rev. 2016, 57, 72–82. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980; pp. 11–29. [Google Scholar]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process; RWS Publications: Pitsburg, PA, USA, 1996; pp. 34–72. [Google Scholar]
- Zadeh, L.A. Fuzzy Sets. Inform. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attributes Decision Making Methods and Applications; Springer: Berlin/Hedelberg, Germany, 1981; pp. 22–51. [Google Scholar]
- Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J.; Zakarevicius, A. Optimization of weighted aggregated sum product assessment. Electr. Electr. Eng. 2012, 122, 3–6. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. Selecting a Contractor by Using a Novel Method for Multiple Attribute Analysis: Weighted Aggregated Sum Product Assessment with Grey Values (WASPAS-G). Stud. Inform. Control. 2015, 24, 141–150. [Google Scholar] [CrossRef]
- Mareschal, B.; Brans, J.P. PROMETHEE V: MCDM Problems with Segmentation Constrains; Universite Libre de Brusells: Brussels, Belgium, 1992; pp. 13–30. [Google Scholar]
- Opricovic, S. Multicriteria Optimization of Civil Engineering Systems; University of Belgrade: Belgrade, Serbia, 1998; pp. 32–71. [Google Scholar]
- Roy, B. La methode ELECTRE. Revue d‘Informatique et. de Recherche Operationelle (RIRO) 1968, 8, 57–75. [Google Scholar]
- Vallée, D.; Zielniewicz, P. ELECTRE III-IV; Université Paris Dauphine: Paris, France, 1994; pp. 18–38. [Google Scholar]
- Hovanov, N. ASPID-METHOD: Analysis and Synthesis of Parameters under Information Deficiency; Petersburg State University Press: St. Petersburg, Russia, 1996. [Google Scholar]
- Brauers, W.K.M.; Zavadskas, E.K. Project Management by MULTIMOORA as an Instrument for Transition Economies. Technol. Econ. Dev. Econ. 2010, 16, 5–24. [Google Scholar] [CrossRef]
- Ren, H.; Gao, W.; Zhou, W.; Nakagami, K. Multi-criteria evaluation for the optimal adoption of distributed residential energy systems in Japan. Energy Policy 2009, 37, 5484–5493. [Google Scholar] [CrossRef]
- Supriyasilp, T.; Pongput, K.; Boonyasirikul, T. Hydropower development priority using MCDM method. Energy Policy 2009, 37, 1866–1875. [Google Scholar] [CrossRef]
- Celikbilek, Y.; Tuysuz, F. An integrated grey based multi-criteria decision making approach for the evaluation of renewable energy sources. Energy 2016, 115, 1246–1258. [Google Scholar] [CrossRef]
- Abdullah, L.; Najib, L. Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: Choosing energy technology in Malaysia. Int. J. Sustain. Energy 2016, 35, 360–377. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M.; Koh, S.C.; Lenny, R.P. A comparison of environmental and energetic performance of European countries: A sustainability index. Renew. Sustain. Energy Rev. 2017, 78, 401–413. [Google Scholar] [CrossRef]
- Shad, R.; Khorrami, M.; Ghaemi, M. Developing an Iranian green building assessment tool using decision making methods and geographical information system: Case study in Mashhad city. Renew. Sustain. Energy Rev. 2017, 67, 324–340. [Google Scholar] [CrossRef]
- Wang, L.; Xu, L.; Song, H. Environmental performance evaluation of Beijing’s energy use planning. Energy Policy 2011, 39, 3483–3495. [Google Scholar] [CrossRef]
- Claudia, R.M.; Martinez, M.; Pena, R. Scenarios for a hierarchical assessment of the global sustainability of electric power plants in Mexico. Renew. Sustain. Energy Rev. 2014, 33, 154–160. [Google Scholar] [CrossRef]
- Ligus, M. Evaluation of Economic, Social and Environmental Effects of Low-Emission Energy Technologies Development in Poland: A Multi-Criteria Analysis with Application of a Fuzzy Analytic Hierarchy Process (FAHP). Energies 2017, 10, 1550. [Google Scholar] [CrossRef]
- AlSabbagh, M.; Siu, Y.L.; Guehnemann, A.; Barrett, J. Integrated approach to the assessment of CO(2) e-mitigation measures for the road passenger transport sector in Bahrain. Renew. Sustain. Energy Rev. 2017, 71, 203–215. [Google Scholar] [CrossRef]
- Talinli, I.; Topuz, E.; Akbay, M.U. Comparative analysis for energy production processes (EPPs): Sustainable energy futures for Turkey. Energy Policy 2010, 38, 4479–4488. [Google Scholar] [CrossRef]
- Lee, S.K.; Mogi, G.; Li, Z.; Hui, K.S.; Lee, S.K.; Hui, K.N. Measuring the relative efficiency of hydrogen energy technologies for implementing the hydrogen economy: An integrated fuzzy AHP/DEA approach. Int. J. Hydrogen Energy 2011, 36, 12655–12663. [Google Scholar] [CrossRef]
- Debbarma, B.; Chakraborti, P.; Bose, P.K.; Deb, M.; Banerjee, R. Exploration of PROMETHEE II and VIKOR methodology in a MCDM approach for ascertaining the optimal performance-emission trade-off vantage in a hydrogen-biohol dual fuel endeavour. Fuel 2017, 210, 922–935. [Google Scholar] [CrossRef]
- Stein, E.W. A comprehensive multi-criteria model to rank electric energy production technologies. Renew. Sustain. Energy Rev. 2013, 22, 640–654. [Google Scholar] [CrossRef]
- Von Doderer, C.C.C.; Kleynhans, T.E. Determining the most sustainable lignocellulosic bioenergy system following a case study approach. Biomass Bioenergy 2014, 70, 273–286. [Google Scholar] [CrossRef]
- Gao, R.; Nam, H.O.; Ko, W.I.I.; Jang, H. National Options for a Sustainable Nuclear Energy System: MCDM Evaluation Using an Improved Integrated Weighting Approach. Energies 2017, 10, 2017. [Google Scholar] [CrossRef]
- Sakthivel, G.; Sivakumar, R.; Saravanan, N.; Ikua, B.W. A decision support system to evaluate the optimum fuel blend in an IC engine to enhance the energy efficiency and energy management. Energy 2017, 140, 566–583. [Google Scholar] [CrossRef]
- Billig, E.; Thraen, D. Renewable methan—A technology evaluation by multi-criteria decision making from a European perspective. Energy 2017, 139, 468–484. [Google Scholar] [CrossRef]
- Ozcan, E.C.; Unlusoy, S.; Eren, T. A combined goal programming—AHP approach supported with TOPSIS for maintenance strategy selection in hydroelectric power plants. Renew. Sustain. Energy Rev. 2017, 78, 1410–1423. [Google Scholar] [CrossRef]
- Blanco, G.; Amarilla, R.; Martinez, A.; Llamosas, C.; Oxilia, V. Energy transitions and emerging economies: A multi-criteria analysis of policy options for hydropower surplus utilization in Paraguay. Energy Policy 2017, 108, 312–321. [Google Scholar] [CrossRef]
- Abotah, R.; Daim, T.U. Towards building a multi perspective policy development framework for transition into renewable energy. Sustain. Energy Technol. Assess. 2017, 21, 67–88. [Google Scholar] [CrossRef]
- Al-Yahyai, S.; Charabi, Y.; Gastli, A.; Al-Badi, A. Wind farm land suitability indexing using multi-criteria analysis. Renew. Energy 2012, 44, 80–87. [Google Scholar] [CrossRef]
- Choudhary, D.; Shankar, R. An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India. Energy 2012, 42, 510–521. [Google Scholar] [CrossRef]
- Tahri, M.; Hakdaoui, M.; Maanan, M. The evaluation of solar farm locations applying Geographic Information System and Multi-Criteria Decision-Making methods: Case study in southern Morocco. Renew. Sustain. Energy Rev. 2015, 51, 1354–1362. [Google Scholar] [CrossRef]
- Baseer, M.A.; Rehman, S.; Meyer, J.P.; Alam, M.M. GIS-based site suitability analysis for wind farm development in Saudi Arabia. Energy 2017, 141, 1166–1176. [Google Scholar] [CrossRef]
- Rojas-Zerpa, J.C.; Yusta, J.M. Application of multicriteria decision methods for electric supply planning in rural and remote areas. Renew. Sustain. Energy Rev. 2015, 52, 557–571. [Google Scholar] [CrossRef]
- Si, J.; Marjanovic-Halburd, L.; Nasiri, F.; Bell, S. Assessment of building-integrated green technologies: A review and case study on applications of Multi-Criteria Decision Making (MCDM) method. Sustain. Cities Soc. 2016, 27, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Amin, H.S.M.; de la Fuente, A.; Pons, O. Multi-criteria decision-making method for assessing the sustainability of post-disaster temporary housing units technologies: A case study in Bam, 2003. Sustain. Cities Soc. 2016, 20, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Perera, A.T.D.; Attalage, R.A.; Perera, K.K.C.K.; Dassanayake, V.P.C. A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems. Appl. Energy 2013, 107, 412–425. [Google Scholar] [CrossRef]
- Jovanovic, M.; Afgan, N.; Bakic, V. An analytical method for the measurement of energy system sustainability in urban areas. Energy 2010, 35, 3909–3920. [Google Scholar] [CrossRef]
- Duan, Z.; Pang, Z.; Wang, X. Sustainability evaluation of limestone geothermal reservoirs with extended production histories in Beijing and Tianjin, China. Geothermics 2011, 40, 125–135. [Google Scholar] [CrossRef]
- Ren, J.; Lutzen, M. Selection of sustainable alternative energy source for shipping: Multi criteria decision making under incomplete information. Renew. Sustain. Energy Rev. 2017, 74, 1003–1019. [Google Scholar] [CrossRef]
- Boran, F.E.; Menlik, T.; Boran, K. Multi-criteria Axiomatic Design Approach to Evaluate Sites for Grid-connected Photovoltaic Power Plants: A Case Study in Turkey. Energy Sources Part B 2010, 5, 290–300. [Google Scholar] [CrossRef]
- Boran, F.E.; Boran, K.; Menlik, T. The Evaluation of Renewable Energy Technologies for Electricity Generation in Turkey Using Intuitionistic Fuzzy TOPSIS. Energy Sources Part B 2012, 7, 81–90. [Google Scholar] [CrossRef]
- Ziolkowska, J.R. Evaluating sustainability of biofuels feedstocks: A multi-objective framework for supporting decision making. Biomass Bioenergy 2013, 59, 425–440. [Google Scholar] [CrossRef]
- Ren, J.; Fedele, A.; Mason, M.; Manzardo, A.; Scipioni, A. Fuzzy Multi-actor Multi-criteria Decision Making for sustainability assessment of biomass-based technologies for hydrogen production. Int. J. Hydrogen Energy 2013, 38, 9111–9120. [Google Scholar] [CrossRef]
- Balezentiene, L.; Streimikiene, D.; Balezentis, T. Fuzzy decision support methodology for sustainable energy crop selection. Renew. Sustain. Energy Rev. 2013, 17, 83–93. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, P.; Newton, S.; Fang, J.; Zhou, D.; Zhang, L. Evaluating clean energy alternatives for Jiangsu, China: An improved multi-criteria decision making method. Energy 2015, 90, 953–964. [Google Scholar] [CrossRef]
- Cutz, L.; Haro, P.; Santana, D.; Johnsson, F. Assessment of biomass energy sources and technologies: The case of Central America. Renew. Sustain. Energy Rev. 2016, 58, 1411–1431. [Google Scholar] [CrossRef]
- Khishtandar, S.; Zandieh, M.; Dorri, B. A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran. Renew. Sustain. Energy Rev. 2017, 77, 1130–1145. [Google Scholar] [CrossRef]
- Ren, J.; Liang, H.; Dong, L.; Gao, Z.; He, C.; Pan, M.; Sun, L. Sustainable development of sewage sludge-to-energy in China: Barriers identification and technologies prioritization. Renew. Sustain. Energy Rev. 2017, 67, 384–396. [Google Scholar] [CrossRef]
- Xu, J.; Song, X.; Wu, Y.; Zeng, Z. GIS-modelling based coal-fired power plant site identification and selection. Appl. Energy 2015, 159, 520–539. [Google Scholar] [CrossRef]
- Zhao, H.; Li, N. Optimal Siting of Charging Stations for Electric Vehicles Based on Fuzzy Delphi and Hybrid Multi-Criteria Decision Making Approaches from an Extended Sustainability Perspective. Energies 2016, 9, 270. [Google Scholar] [CrossRef]
- Aplak, H.S.; Sogut, M.Z. Game theory approach in decisional process of energy management for industrial sector. Energy Convers. Manag. 2013, 74, 70–80. [Google Scholar] [CrossRef]
- Diemuodeke, E.O.; Hamilton, S.; Addo, A. Multi-criteria assessment of hybrid renewable energy systems for Nigeria’s coastline communities. Energy Sustain. Soc. 2016, 6, 26. [Google Scholar] [CrossRef]
- Balezentis, T.; Streimikiene, D. Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation. Appl. Energy 2017, 185, 862–871. [Google Scholar] [CrossRef]
- Streimikiene, D.; Balezentis, T.; Krisciukaitiene, I.; Balezentis, A. Prioritizing sustainable electricity production technologies: MCDM approach. Renew. Sustain. Energy Rev. 2012, 16, 3302–3311. [Google Scholar] [CrossRef]
- Streimikiene, D.; Balezentis, T. Multi-criteria assessment of small scale CHP technologies in buildings. Renew. Sustain. Energy Rev. 2013, 26, 183–189. [Google Scholar] [CrossRef]
- He, C.; Zhang, Q.; Ren, J.; Li, Z. Combined cooling heating and power systems: Sustainability assessment under uncertainties. Energy 2017, 139, 755–766. [Google Scholar] [CrossRef]
- Rupf, G.V.; Bahri, P.A.; de Boer, K.; McHenry, M.P. Development of an optimal biogas system design model for Sub-Saharan Africa with case studies from Kenya and Cameroon. Renew. Energy 2017, 109, 586–601. [Google Scholar] [CrossRef]
- Kartal, O.; Oncel, A.G. Comparison of sustainable information technologies for companies. Int. J. Low-Carbon Technol. 2015, 10, 374–378. [Google Scholar] [CrossRef]
- Vafaeipour, M.; Hashemkhani, Z.S.; Varzandeh, M.H.M.; Derakhti, A.; Eshkalag, M.K. Assessment of regions priority for implementation of solar projects in Iran: New application of a hybrid multi-criteria decision making approach. Energy Convers. Manag. 2014, 86, 653–663. [Google Scholar] [CrossRef]
- Tsoutsos, T.; Drandaki, M.; Frantzeskaki, N.; Iosifidis, E.; Kiosses, I. Sustainable energy planning by using multi-criteria analysis application in the island of Crete. Energy Policy 2009, 37, 1587–1600. [Google Scholar] [CrossRef]
- Cavallaro, F. Multi-criteria decision aid to assess concentrated solar thermal technologies. Renew. Energy 2009, 34, 1678–1685. [Google Scholar] [CrossRef]
- Troldborg, M.; Heslop, S.; Hough, R.L. Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties. Renew. Sustain. Energy Rev. 2014, 39, 1173–1184. [Google Scholar] [CrossRef]
- Parajuli, R.; Knudsen, M.T.; Dalgaard, T. Multi-criteria assessment of yellow, green, and woody biomasses: Pre-screening of potential biomasses as feedstocks for biorefineries. Biofuels Bioprod. Biorefin.-Biofpr. 2015, 9, 545–566. [Google Scholar] [CrossRef]
- Stamatakis, A.; Mandalaki, M.; Tsoutsos, T. Multi-criteria analysis for PV integrated in shading devices for Mediterranean region. Energy Build. 2016, 117, 128–137. [Google Scholar] [CrossRef]
- Quijano, H.R.; Botero, B.S.; Dominguez, B.J. MODERGIS application: Integrated simulation platform to promote and develop renewable sustainable energy plans, Colombian case study. Renew. Sustain. Energy Rev. 2012, 16, 5176–5187. [Google Scholar] [CrossRef]
- Karakosta, C.; Doukas, H.; Psarras, J. Directing clean development mechanism towards developing countries’ sustainable development priorities. Energy Sustain. Dev. 2009, 13, 77–84. [Google Scholar] [CrossRef]
- Dall’O’, G.; Norese, M.F.; Galante, A.; Novello, C. A Multi-Criteria Methodology to Support Public Administration Decision Making Concerning Sustainable Energy Action Plans. Energies 2013, 6, 4308–4330. [Google Scholar] [CrossRef] [Green Version]
- Grujic, M.; Ivezic, D.; Zivkovic, M. Application of multi-criteria decision-making model for choice of the optimal solution for meeting heat demand in the centralized supply system in Belgrade. Energy 2014, 67, 341–350. [Google Scholar] [CrossRef]
- Zanuttigh, B.; Angelelli, E.; Kortenhaus, A.; Koca, K.; Krontira, Y.; Koundouri, P. A methodology for multi-criteria design of multi-use offshore platforms for marine renewable energy harvesting. Renew. Energy 2016, 85, 1271–1289. [Google Scholar] [CrossRef]
- Vucicevic, B.; Jovanovic, M.; Afgan, N.; Turanjanin, V. Assessing the sustainability of the energy use of residential buildings in Belgrade through multi-criteria analysis. Energy Build. 2014, 69, 51–61. [Google Scholar] [CrossRef]
- Streimikiene, D.; Balezentis, T. Multi-objective ranking of climate change mitigation policies and measures in Lithuania. Renew. Sustain. Energy Rev. 2013, 18, 144–153. [Google Scholar] [CrossRef]
- Hugo, A.; Rutter, P.; Pistikopoulos, S.; Amorelli, A.; Zoia, G. Hydrogen infrastructure strategic planning using multi-objective optimization. Int. J. Hydrogen Energy 2005, 30, 1523–1534. [Google Scholar] [CrossRef]
- Heinrich, G.; Howells, M.; Basson, L.; Petrie, J. Electricity supply industry modelling for multiple objectives under demand growth uncertainty. Energy 2007, 32, 2210–2229. [Google Scholar] [CrossRef]
- Patlitzianas, K.D.; Ntotas, K.; Doukas, H.; Psarras, J. Assessing the renewable energy producers’ environment in EU accession member states. Energy Convers. Manag. 2007, 48, 890–897. [Google Scholar] [CrossRef]
- Phdungsilp, A. Integrated energy and carbon modeling with a decision support system: Policy scenarios for low-carbon city development in Bangkok. Energy Policy 2010, 38, 4808–4817. [Google Scholar] [CrossRef]
- Morimoto, R. Incorporating socio-environmental considerations into project assessment models using multi-criteria analysis: A case study of Sri Lankan hydropower projects. Energy Policy 2013, 59, 643–653. [Google Scholar] [CrossRef]
- Moreira, J.M.L.; Cesaretti, M.A.; Carajilescov, P.; Maiorino, J.R. Sustainability deterioration of electricity generation in Brazil. Energy Policy 2015, 87, 334–346. [Google Scholar] [CrossRef]
- Jayaraman, R.; Colapinto, C.; La Torre, D.; Malik, T. Multi-criteria model for sustainable development using goal programming applied to the United Arab Emirates. Energy Policy 2015, 87, 447–454. [Google Scholar] [CrossRef]
- Neves, A.R.; Leal, V.; Lourenco, J.C. A methodology for sustainable and inclusive local energy planning. Sustain. Cities Soc. 2015, 17, 110–121. [Google Scholar] [CrossRef]
- Carlos, D.D.L.; Marcos, M.F. Sustainable and renewable implementation multi-criteria energy model (SRIME)-case study: Sri Lanka. Int. J. Energy Environ. Eng. 2015, 6, 165–181. [Google Scholar]
- Read, L.; Madani, K.; Mokhtari, S.; Hanks, C. Stakeholder-driven multi-attribute analysis for energy project selection under uncertainty. Energy 2017, 119, 744–753. [Google Scholar] [CrossRef] [Green Version]
- Wang, H. A generalized MCDA DEA (multi-criterion decision analysis data envelopment analysis) approach to construct slacks-based composite indicator. Energy 2015, 80, 114–122. [Google Scholar] [CrossRef]
- Noori, M.; Kucukvar, M.; Tatari, O. A macro-level decision analysis of wind power as a solution for sustainable energy in the USA. Int. J. Sustain. Energy 2015, 34, 629–644. [Google Scholar] [CrossRef]
- Nzila, C.; Dewulf, J.; Spanjers, H.; Tuigong, D.; Kiriamiti, H.; van Langenhove, H. Multi criteria sustainability assessment of biogas production in Kenya. Appl. Energy 2012, 93, 496–506. [Google Scholar] [CrossRef]
- Dimitrova, Z.; Marechal, F. Techno-economic design of hybrid electric vehicles and possibilities of the multi-objective optimization structure. Appl. Energy 2016, 161, 746–759. [Google Scholar] [CrossRef]
- Kassem, A.; Al-Haddad, K.; Komljenovic, D.; Schiffauerova, A. A value tree for identification of evaluation criteria for solar thermal power technologies in developing countries. Sustain. Energy Technol. Assess. 2016, 16, 18–32. [Google Scholar] [CrossRef]
- Zhong, J.; Yu, T.E.; Larson, J.A.; English, B.C.; Fu, J.S.; Calcagno, J. Analysis of environmental and economic tradeoffs in switchgrass supply chains for biofuel production. Energy 2016, 107, 791–803. [Google Scholar] [CrossRef] [Green Version]
- Koo, C.; Hong, T.; Lee, M.; Kim, J. An integrated multi-objective optimization model for determining the optimal solution in implementing the rooftop photovoltaic system. Renew. Sustain. Energy Rev. 2016, 57, 822–837. [Google Scholar] [CrossRef]
- Dimitrova, Z.; Marechal, F. Environomic design of vehicle energy systems for optimal mobility service. Energy 2014, 76, 1019–1028. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.J.W.; Whalley, S. Comparing the sustainability of US electricity options through multi-criteria decision analysis. Energy Policy 2015, 79, 127–149. [Google Scholar] [CrossRef]
- Sangiuliano, S.J. Planning for tidal current turbine technology: A case study of the Gulf of St. Lawrence. Renew. Sustain. Energy Rev. 2017, 70, 805–813. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Sui, J.; Jin, H. Multi-objective energy planning for regional natural gas distributed energy: A case study. J. Nat. Gas Sci. Eng. 2016, 28, 418–433. [Google Scholar] [CrossRef]
- Ziemba, P.; Watrobski, J.; Ziolo, M.; Karczmarczyk, A. Using the PROSA Method in Offshore Wind Farm Location Problems. Energies 2017, 10, 1755. [Google Scholar] [CrossRef]
- Abaei, M.M.; Arzaghi, E.; Abbassi, R.; Garaniya, V.; Penesis, I. Developing a novel risk-based methodology for multi-criteria decision making in marine renewable energy applications. Renew. Energy 2017, 102, 341–348. [Google Scholar] [CrossRef]
- Shmelev, S.E.; Van den Bergh, J.C.J.M. Optimal diversity of renewable energy alternatives under multiple criteria: An application to the UK. Renew. Sustain. Energy Rev. 2016, 60, 679–691. [Google Scholar] [CrossRef]
- Onat, N.C.; Noori, M.; Kucular, M.; Zhao, Y.; Tatari, O.; Chester, M. Exploring the suitability of electric vehicles in the United States. Energy 2017, 121, 631–642. [Google Scholar] [CrossRef]
- Giarola, S.; Bezzo, F.; Shah, N. A risk management approach to the economic and environmental strategic design of ethanol supply chains. Biomass Bioenergy 2013, 58, 31–51. [Google Scholar] [CrossRef]
- Ostergard, T.; Jensen, R.L.; Maagaard, S.E. Early Building Design: Informed decision-making by exploring multidimensional design space using sensitivity analysis. Energy Build. 2017, 142, 8–22. [Google Scholar] [CrossRef]
- Theodorou, S.; Florides, G.; Tassou, S. The use of multiple criteria decision making methodologies for the promotion of RES through funding schemes in Cyprus, A review. Energy Policy 2010, 38, 7783–7792. [Google Scholar] [CrossRef]
- Ribeiro, F.; Ferreira, P.; Araujo, M. The inclusion of social aspects in power planning. Renew. Sustain. Energy Rev. 2011, 15, 4361–4369. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Zerpa, J.C.; Yusta, J.M. Methodologies, technologies and applications for electric supply planning in rural remote areas. Energy Sustain. Dev. 2014, 20, 66–76. [Google Scholar] [CrossRef]
- Shortall, R.; Davidsdottir, B. How to measure national energy sustainability performance: An Icelandic case-study. Energy Sustain. Dev. 2017, 39, 29–47. [Google Scholar] [CrossRef]
- Pohekar, S.D.; Ramachandran, M. Application of multi-criteria decision making to sustainable energy planning–A review. Renew. Sustain. Energy Rev. 2004, 8, 365–381. [Google Scholar] [CrossRef]
- Greening, L.A.; Bernow, S. Design of coordinated energy and environmental policies: Use of multi-criteria decision-making. Energy Policy 2004, 32, 721–735. [Google Scholar] [CrossRef]
- Strantzali, E.; Aravossis, K. Decision making in renewable energy investments: A review. Renew. Sustain. Energy Rev. 2016, 55, 885–898. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Khalifah, Z.; Zakuan, N.; Jusoh, A.; Nor, K.M.; Khoshnoudi, M. A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015. Renew. Sustain. Energy Rev. 2017, 71, 216–256. [Google Scholar] [CrossRef]
- Bhowmik, C.; Bhowmik, S.; Ray, A.; Pandey, K.M. Optimal green energy planning for sustainable development: A review. Renew. Sustain. Energy Rev. 2017, 71, 796–813. [Google Scholar] [CrossRef]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Bhattacharyya, S.C. Review of alternative methodologies for analysing off-grid electricity supply. Renew. Sustain. Energy Rev. 2012, 16, 677–694. [Google Scholar] [CrossRef]
- Kurka, T.; Blackwood, D. Selection of MCA methods to support decision making for renewable energy developments. Renew. Sustain. Energy Rev. 2013, 27, 225–233. [Google Scholar] [CrossRef]
- Ioannou, A.; Angus, A.; Brennan, F. Risk-based methods for sustainable energy system planning: A review. Renew. Sustain. Energy Rev. 2017, 74, 602–615. [Google Scholar] [CrossRef]
Web of Science Category | Number of Publications |
---|---|
Energy fuels | 126 |
Green sustainable science technology | 81 |
Environmental sciences | 76 |
Engineering environmental | 42 |
Environmental studies | 36 |
Thermodynamics | 25 |
Economics | 21 |
Construction building technology | 19 |
Engineering civil | 17 |
Engineering chemical | 17 |
Operations research management science | 16 |
Engineering electrical electronic | 11 |
Institutions | Number of Publications |
---|---|
University of Belgrade | 11 |
Vilnius Gediminas Technical University | 9 |
Indian Institute of Technology ITT | 7 |
Hong Kong Polytechnic University | 7 |
North China Electric Power University | 7 |
Universidade de Lisboa | 6 |
National Technical University of Athens | 6 |
University of Southern Denmark | 6 |
Chinese Academy of Sciences | 5 |
Ecole Polytechnique Federale de Lausanne | 5 |
Lithuanian Institute of Agrarian Economics | 5 |
State University System of Florida | 5 |
University of British Columbia | 5 |
University of Central Florida | 5 |
Journals | Number of Publications |
---|---|
Renewable and Sustainable Energy Reviews | 31 |
Energy | 20 |
Journal of Cleaner Production | 20 |
Energy Policy | 15 |
Sustainability | 10 |
Applied Energy | 5 |
Clean Technologies and Environmental Policy | 5 |
Renewable Energy | 5 |
Energies | 5 |
Application Area Method | Energy Policy/Project Selection | Impact Analysis | Evaluation of Power Generation Technologies | Regional Planning | Place Selection | National Planning | Review | Methods Selection Papers | OTHER |
---|---|---|---|---|---|---|---|---|---|
AHP, ANP | [16,17,18,19,20,21] | [21,22,23,24,25] | [18,19,26,27,28,29,30,31,32,33,34] | [19,35,36] | [17,37,38,39,40] | [22,26,31,35,36,41,42,43] | |||
Fuzzy Sets | [18,19,44] | [22,24,45,46,47] | [18,26,27,31,32,48,49,50,51,52,53,54,55,56] | [19] | [38,57,58] | [26,31] | [59] | ||
TOPSIS | [44,60,61] | [59] | [31,32,34,49,60,62,63,64,65] | [61] | [38] | [31] | [59,66] | ||
WASPAS, WASPAS-G | [61,67] | [61,67] | [67] | ||||||
PROMETHEE PROMETHEE II | [16,68] | [28,31,50,69,70,71] | [31,68] | [72] | |||||
VIKOR | [18,73] | [18,28,32] | [58] | [41] | |||||
ELECTRE ELECTRE III | [74,75] | [74,76,77] | [76] | [76] | |||||
ASPID | [45,78] | ||||||||
MULTIMOORA | [79] | [52,62,79] | [79] | [79] | |||||
OTHER | [61,67,80,81,82,83,84,85,86,87,88,89] | [85,90,91] | [48,92,93,94,95,96,97,98,99] | [61,67,85,100] | [57,101,102] | [43,67,86,87,88,103,104] | [105,106] | ||
REVIEW | [107,108,109] | [110] | [107] | [107] | [1,109,111,112,113,114,115,116] | [1,112,114,116,117,118,119] |
Application Area Method | Energy Policy/Project Selection | Impact Analysis | Evaluation of Power Generation Technologies | Regional Planning | Place Selection | National Planning | Review | Methods Selection Papers | Other |
---|---|---|---|---|---|---|---|---|---|
AHP, ANP | 16.67 | 31.25 | 19.64 | 21.43 | 38.46 | 32 | |||
Fuzzy Sets | 8.33 | 31.25 | 25 | 7.14 | 23.08 | 8 | 16.67 | ||
TOPSIS | 8.33 | 6.25 | 16.07 | 7.14 | 7.69 | 4 | 33.33 | ||
WASPAS WASPAS-G | 5.56 | 14.29 | 4 | ||||||
PROMETHEE PROMETHEE II | 5.56 | 10.71 | 8 | 16.67 | |||||
VIKOR | 5.56 | 5.36 | 7.69 | 4 | |||||
ELECTRE ELECTRE III | 5.56 | 5.36 | 7.14 | 4 | |||||
ASPID | 12.5 | ||||||||
MULTI MOORA | 2.78 | 3.57 | 7.14 | 4 | |||||
OTHER | 33.32 | 12.5 | 14.29 | 28.58 | 23.08 | 28 | 33.33 | ||
REVIEW | 8.33 | 6.25 | 7.14 | 4 | 100 | 100 | |||
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Application Area Method | Energy Policy/Project Selection | Impact Analysis | Evaluation of Power Generation Technologies | Regional Planning | Place Selection | National Planning | Review | Methods Selection Papers | Other |
---|---|---|---|---|---|---|---|---|---|
AHP, ANP | 15.79 | 13.16 | 28.94 | 7.90 | 13.16 | 21.05 | |||
Fuzzy Sets | 10.35 | 17.23 | 48.27 | 3.45 | 10.35 | 6.90 | 3.45 | ||
TOPSIS | 16.66 | 5.56 | 50 | 5.56 | 5.56 | 5.56 | 11.10 | ||
WASPAS, WASPAS-G | 40 | 40 | 20 | ||||||
PROMETHEE PROMETHEE II | 18.18 | 54.55 | 18.18 | 9.09 | |||||
VIKOR | 28.57 | 42.85 | 14.29 | 14.29 | |||||
ELECTRE ELECTRE III | 28.57 | 42.85 | 14.29 | 14.29 | |||||
ASPID | 100 | ||||||||
MULTIMOORA | 20 | 40 | 20 | 20 | |||||
OTHER | 31.59 | 5.26 | 21.05 | 10.53 | 7.89 | 18.42 | 5.26 | ||
REVIEW | 14.29 | 4.76 | 4.76 | 4.76 | 38.10 | 33.33 |
Method | Strengths | Weaknesses | Opportunities | Threats |
---|---|---|---|---|
AHP, ANP |
|
|
|
|
Fuzzy Sets |
|
|
|
|
TOPSIS |
|
|
|
|
WASPAS, WASPAS-G |
|
|
|
|
PROMETHEE, PROMETHEE II |
|
|
|
|
VIKOR |
|
|
|
|
ELECTRE, ELECTRE III |
|
|
|
|
ASPID |
|
|
|
|
MULTIMOORA |
|
|
|
|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siksnelyte, I.; Zavadskas, E.K.; Streimikiene, D.; Sharma, D. An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues. Energies 2018, 11, 2754. https://doi.org/10.3390/en11102754
Siksnelyte I, Zavadskas EK, Streimikiene D, Sharma D. An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues. Energies. 2018; 11(10):2754. https://doi.org/10.3390/en11102754
Chicago/Turabian StyleSiksnelyte, Indre, Edmundas Kazimieras Zavadskas, Dalia Streimikiene, and Deepak Sharma. 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues" Energies 11, no. 10: 2754. https://doi.org/10.3390/en11102754
APA StyleSiksnelyte, I., Zavadskas, E. K., Streimikiene, D., & Sharma, D. (2018). An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues. Energies, 11(10), 2754. https://doi.org/10.3390/en11102754