Dynamic Performance Evaluation of Photovoltaic Power Plant by Stochastic Hybrid Fault Tree Automaton Model
<p>Mutual dependency between the deterministic and the stochastic model.</p> "> Figure 2
<p>Steps for the construction of a SHyFTA model.</p> "> Figure 3
<p>Map of the power plant and its sections.</p> "> Figure 4
<p>Power Inverter configuration.</p> "> Figure 5
<p>Schematic decomposition of the PV system.</p> "> Figure 6
<p>Fault tree of the PV power plant. PV GEN 1 and PV GEN 2 are represented with the transfer gate symbol (triangle) because these sub-systems are developed into another fault tree model.</p> "> Figure 7
<p>Fault tree of a PV generator. The basic event Inverter (INV) is represented with a dashed circle to indicate that it belongs to the subset of the hybrid basic events.</p> "> Figure 8
<p>Hybrid-Pair architecture of the case study and corresponding SHyFTA mapping.</p> "> Figure 9
<p>Simulink implementation of the MatCarloRE library.</p> "> Figure 10
<p>Simulink implementation of the Basic Event block.</p> "> Figure 11
<p>Simulink implementation of the Hybrid Basic Event Block.</p> "> Figure 12
<p>Assertion block controlling the Simulink® simulation.</p> "> Figure 13
<p>Comparison between the energy produced by the deterministic model, the SHyFTA and the real system.</p> "> Figure 14
<p>Comparison between the relative error of the deterministic model and the SHyFTA.</p> "> Figure 15
<p>Energy production estimation throughout the life time of the power plant (20 years).</p> ">
Abstract
:1. Introduction
2. Stochastic Hybrid Fault Tree Automaton: Concept and Implementation in Renewable Power Plants
3. Case Study: A Photovoltaic Power Plant
- PV Module (PVM), constitutes the PV module strings of the power plants (PVS);
- Direct Current Section (DCS), made up of string protection diodes (SPR), DC disconnectors (DCD) and surge protection devices (SPD);
- Alternating Current Section (ACS),made up of inverters (INV), surge protection devices (SPD) and AC circuit breakers (ACB);
- Grid Connector Coupling (GCC), made up of grid protection (GPR), an AC disconnector (ACD), a differential circuit breaker (DCB) and a transformer (TRA).
3.1. Definition of the Deterministic Process
3.2. Definition of the Stochastic Process
4. Simulation of the SHyFTA Model
Energy Production Estimation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
G | Global irradiance | β | Shape factor (Weibull function) |
IPER | Italian Producer Electrical Regulation | γ | Scale parameter (Weibull function) |
SHyFTA | Stochastic Hybrid Fault Tree Automaton | λ | Failure rate |
ACB | Alternate current circuit breaker | µ | Repair rate |
ACD | Alternate current disconnector | α | Tilt angle |
ACS | Alternate current section | η | Efficiency |
L(t) | Aging | I0 | Orthogonal solar irradiance |
MPPT | Maximum Power Point Tracking | SCADA | Supervisory Control & Data Acquisition |
NOCT | Nominal Operating Cell Temperature | S | Module Area |
PkGCC(t) | Active Power at the generation meter | Probability density function | |
Pac | Alternate current power | ηm | Solar module efficiency |
Tc | Solar module temperature | ηfirst | Efficiency (first year) |
Ta | Ambient temperature | ηinverter | Inverter efficiency |
Tc,std | Module temperature (standard conditions) | ηn | Efficiency (nth year) |
A | Availability | ηstd | Efficiency (standard conditions) |
SSA | Steady state availability | ρ | Power coefficient |
U | Unavailability | Dr | Degradation rate |
References
- Sen, R.; Bhattacharyya, S.C. Off-grid electricity generation with renewable energy technologies in India: An application of HOMER. Renew. Energy 2014, 62, 388–398. [Google Scholar] [CrossRef]
- Vick, B.D.; Almas, L.K. Developing wind and/or solar powered crop irrigation systems for the great plains. Appl. Eng. Agric. 2011, 27, 235–245. [Google Scholar] [CrossRef]
- Chueco-Fernández, F.J.; Bayod-Rújula, A.A. Power supply for pumping systems in northern Chile: Photovoltaics as alternative to grid extension and diesel engines. Energy 2010, 35, 2909–2921. [Google Scholar] [CrossRef]
- Ellabbana, O.; Abu-Rubb, H.; Blaabjergc, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Osório, G.J.; Lujano-Rojas, J.M.; Matias, J.C.O.; Catalão, J.P.S. A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources. Energy 2015, 82, 949–959. [Google Scholar] [CrossRef]
- Fuchs, E.F.; Masoum, M.A.S. Analyses and Designs Related to Renewable Energy Systems. In Power Conversion of Renewable Energy Systems; Springer: New York, NY, USA, 2011; pp. 557–687. [Google Scholar]
- Fleten, S.E.; Maribu, K.M.; Wangensteen, I. Optimal investment strategies in decentralized renewable power generation under uncertainty. Energy 2007, 32, 803–815. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, M.A.; Agalgaonkar, A.P.; Muttaqi, K.M. Assessment of energy supply and continuity of service in distribution network with renewable distributed generation. Appl. Energy 2014, 113, 1015–1026. [Google Scholar] [CrossRef]
- Misra, K.B. Dependability considerations in the Design of a system. In Handbook of Performability Engineering; Springer: London, UK, 2008; pp. 71–80. [Google Scholar] [CrossRef]
- Li, Y.F.; Zio, E. A multi-state model for the reliability assessment of a distributed generation system via universal generating function. Reliab. Eng. Syst. Saf. 2012, 106, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Chiacchio, F.; D’Urso, D.; Compagno, L.; Manno, G. Stochastic hybrid automaton model of a multi-state system with aging: Reliability assessment and design consequences. Reliab. Eng. Syst. Saf. 2016, 149, 1–13. [Google Scholar] [CrossRef]
- Zini, G.; Mangeant, C.; Merten, J. Reliability of large-scale grid-connected photovoltaic systems. Renew. Energy 2011, 36, 2334–2340. [Google Scholar] [CrossRef]
- Zhang, P.; Li, W.; Li, S.; Wang, Y.; Xiao, W. Reliability assessment of photovoltaic power systems: Review of current status and future perspectives. Appl. Energy 2013, 104, 822–833. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Y.; Xiao, W.; Li, W. Reliability Evaluation of Grid-Connected Photovoltaic Power Systems. IEEE Trans. Sustain. Energy 2012, 3. [Google Scholar] [CrossRef]
- Colli, A. Failure mode and effect analysis for photovoltaic systems. Renew. Sustain. Energy Rev. 2015, 50, 804–809. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, L.; Sun, H.; Guo, Q.; Bai, X. Floating offshore wind turbine reliability analysis based on system grading and dynamic FTA. J. Wind Eng. Ind. Aerodyn. 2016, 154, 21–33. [Google Scholar] [CrossRef]
- Pérez, J.M.P.; Márquez, F.P.G.; Tobias, A.; Papaelias, M. Wind turbine reliability analysis. Renew. Sustain. Energy Rev. 2013, 23, 463–472. [Google Scholar] [CrossRef]
- Marquez, F.P.G.; Perez, J.M.P.; Marugan, A.P.; Papaelias, M. Identification of critical components of wind turbines using FTA over the time. Renew. Energy 2016, 87, 869–883. [Google Scholar] [CrossRef]
- Badoniya, R.; Premi, R.; Patel, P. System Failure Analysis in Hydro Power Plant. Int. J. Emerg. Technol. 2014, 5, 54–58. [Google Scholar]
- Zhou, J.; Shawwash, Z.K.; Archila, D.; Vassilev, P.; Plesa, V.; Kong, G.; Abdalla, A. Reliability Analysis Approach for Operations Planning of Hydropower Systems. In Proceedings of the 11th International Conference on Hydroinformatics, HIC 2014, New York, NY, USA, 17–21 August 2014. [Google Scholar]
- Borges, C.L.T. An overview of reliability models and methods for distribution systems with renewable energy distributed generation. Renew. Sustain. Energy Rev. 2012, 16, 4008–4015. [Google Scholar] [CrossRef]
- Devooght, J. Dynamic reliability. Adv. Nucl. Sci. Technol. 2002, 25, 215–278. [Google Scholar]
- Lee, H.; Kim, T.; Heo, G. Application of Dynamic Probabilistic Safety Assessment Approach for Accident Sequence Precursor Analysis: Case Study for Steam Generator Tube Rupture. Nucl. Eng. Technol. 2017. [Google Scholar] [CrossRef]
- Aubry, J.F.; Brînzei, N. Stochastic Hybrid Automaton. In Systems Dependability Assessment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Chiacchio, F.; D’Urso, D.; Compagno, L.; Pennisi, M.; Pappalardo, F.; Manno, G. SHyFTA, a Stochastic Hybrid Fault Tree Automaton for the modelling and simulation of dynamic reliability problems. Expert Syst. Appl. 2016, 47, 42–57. [Google Scholar] [CrossRef]
- Chraibi, H. Dynamic reliability modeling and assessment with PyCATSHOO: Application to a test case. In Proceedings of the PSAM, Tokyo, Japan, 15–17 April 2013. [Google Scholar]
- Castañeda, G.A.; Aubry, J.F.; Brinzei, N. DyRelA (dynamic reliability and assessment). In Proceedings of the First Workshop on Dynamic Aspects in Dependability Models for Fault-Tolerant Systems, Valencia, Spain, 27 April 2010; pp. 39–40. [Google Scholar]
- Manno, G.; Chiacchio, F.; D’Urso, D.; Trapani, N.; Compagno, L. Conception of Repairable Dynamic Fault Trees and resolution by the use of RAATSS, a Matlab® toolbox based on the ATS formalism. Reliab. Eng. Syst. Saf. 2014, 121, 250–262. [Google Scholar] [CrossRef]
- Aizpurua, J.I.; Papadopoulos, Y.; Muxika, E.; Chiacchio, F.; Manno, G. On Cost-effective Reuse of Components in the Design of Complex Reconfigurable Systems. Qual. Reliab. Eng. Int. 2017, 33, 1387–1406. [Google Scholar] [CrossRef]
- Zhang, H.; Dufour, F.; Dutuit, Y.; Gonzalez, K. Piecewise deterministic Markov processes and dynamic reliability. Proc. Inst. Mech. Eng. O J. Risk Reliab. 2008, 222, 545–551. [Google Scholar] [CrossRef]
- Bouissou, M. Comparison of two Monte Carlo schemes for simulating Piecewise Deterministic Markov Processes. In Proceedings of the Mathematical Methods in Reliability, Glasgow, UK, 1–4 July 2007. [Google Scholar]
- Manno, G.; Zymaris, A.; Kakalis, N.P.; Chiacchio, F.; Cipollone, G.; Compagno, L.; D’Urso, D.; Trapani, N. Dynamic reliability of three nonlinear aging components with different failure modes characteristics. In Safety, Reliability and Risk Analysis, Beyond the Horizon; Steenbergen, R.D.J.M., VanGelder, P.H.A.J.M., Miraglia, S., Vrouwenvelder, A.C.W.M., Eds.; Taylor and Francis Group: London, UK, 2014. [Google Scholar]
- Chiacchio, F.; Aizpurua, J.I.; D’Urso, D.; Compagno, L. Coherence region of the Priority-AND gate: Analytical and numerical examples. Qual. Reliab. Eng. Int. 2018, 34, 107–115. [Google Scholar] [CrossRef]
- Hiremath, R.B.; Shikha, S.; Ravindranath, N.H. Decentralized energy planning; modeling and application—A review. Renew. Sustain. Energy Rev. 2007, 11, 729–752. [Google Scholar] [CrossRef]
- IL Terzo Conto Energia. Guida alla Richiesta degli Incentivi per gli Impianti Fotovoltaici; Gestore dei Servizi Energetici (GSE): Rome, Italy, 2011.
- Urtasun, A.; Sanchis, P.; Marroyo, L. Limiting the power generated by a photovoltaic system. In Proceedings of the 2013 10th International Multi-Conference on Systems, Signals and Devices, Hammamet, Tunisia, 18–21 March 2013. [Google Scholar] [CrossRef]
- Skoplaky, E.; Palyvos, J.A. Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renew. Energy 2009, 34, 23–29. [Google Scholar] [CrossRef]
- Jordan, D.C.; Kurtz, S.R. Photovoltaic degradation rates—An analytic review. Prog. Photovolt. 2013, 21, 12–29. [Google Scholar] [CrossRef]
- Famoso, F.; Lanzafame, R.; Maenza, S.; Scandura, P.F. Performance comparison between micro-inverter and string-inverter Photovoltaic Systems. Energy Procedia 2015, 81, 526–539. [Google Scholar] [CrossRef]
- Faranda, R.S.; Hafezi, H.; Leva, S.; Mussetta, M.; Ogliari, E. The Optimum PV Plant for a Given Solar DC/AC Converter. Energies 2015, 8, 4853–4870. [Google Scholar] [CrossRef] [Green Version]
- Caramagna, A.; Famoso, F.; Lanzafame, R.; Monforte, P. Analysis of vertical profile of particulates dispersion in function of the aerodynamic diameter at a congested road in Catania. Energy Procedia 2015, 82, 702–707. [Google Scholar] [CrossRef]
- Zio, E. The Monte Carlo Simulation Method for System Reliability and Risk Analysis; Springer: London, UK, 2013; ISBN 978-1-4471-4587-5. [Google Scholar]
- Manno, G.; Chiacchio, F.; Compagno, L.; D’Urso, D.; Trapani, N. An integrated FT and Monte Carlo Simulink tool for the reliability assessment of dynamic fault tree. Expert Syst. Appl. 2012, 39, 10334–10342. [Google Scholar] [CrossRef]
- Buckland, S.T. Monte Carlo confidence intervals. Biometrics 1984, 40, 811–817. [Google Scholar] [CrossRef]
a. Account for the variability of the primary resource and its effects on the system |
b. Consider the performance deterioration caused by the fault of the system components |
c. Estimate the plant performance, within a recognized tolerance |
d. Allow a flexible re-design and application of the model |
Process | Reliability Assessment | Dynamic Reliability | |
---|---|---|---|
Static Models | Dynamic Models | Hybrid-Dynamic Models | |
Physical | Static working conditions; Single-state operating components | Static working conditions; Single-state operating components | Dynamic working conditions; Multi-state operating components |
Stochastic | Boolean components; Fixed probability of failure; Independence of components | Multi-state degradation components; Fixed probability of failure; Time-event sequence dependencies | Multi-state degradation components; Dynamic probability of failure; Time-event sequence dependencies |
Modelling Techniques | Reliability Block Diagrams; Fault Trees | Dynamic Reliability Block Diagrams; Dynamic Fault Trees; Markov Processes | Stochastic Automaton Models; Regime Switching Models; Piecewise Markov Processes |
Satisfied Criteria (Table 1) | c *, d; | c *, e; | a, b, c **, d; |
Name | Graphical Representation | Description (N Input) |
---|---|---|
SPARE | | It triggers only after the primary and all the N-1 spare occur. Spares can be shared with other spare gate. It is possible to identify three different types of spare on the basis of the dormancy factor α which is a multiplicative factor to the active failure rate (when the spare is not in use): Cold: α = 0, spare cannot fail as long is not active; Hot: α = 1, spare can fail at the same rate as when active; Warm: 0 < α < 1, spare can always fail, but at a reduced failure rate when is not in use. |
PAND | | It behaves like an AND gate but it triggers only if the input events occur in the order from the leftmost to the rightmost. |
SEQ | | It forces the input events to occur from the left to the right order. It can model the gradual degradation of a system. It behaves as a Cold Spare Gate. |
FDEP | | This gate models the failure of the dependent input events if the trigger occurs. The output is a dummy or an input for other gates. Note that input events can fail by themselves too. |
Location | 37.1751° N 16.1596° E |
---|---|
Ppeak | 419.52 kWp |
N° inverters | 2 |
N° strings boxes | 4 (for inverter) |
N° strings | 138 |
N° modules | 2208 (16 for each string) |
Azimuth Angle (β) | 180° |
Tilt | 30° |
Ppeak | 190 W (Monocrystalline) |
---|---|
Panel efficiency (η) | 15% |
Vmp | 37 V |
Imp | 5.04 A |
Voc | 45.1 V |
Isc | 5.35 A |
NOCT | 45 ± 2 °C |
Pacmax | 220 kW |
---|---|
Voltage range MPPT | 485 V < VMPPT < 950 V |
N° independent MPPT | 4 |
ηmax | 98% |
Vacr | 320 V |
Iacmax | 450 A |
Idcmax | 492 A |
Power (kW) | Subsidy | Price * | Total (∑) |
---|---|---|---|
1 < P ≤ 3 | 0.362 | 0.25 | 0.612 |
3 < P ≤ 20 | 0.339 | 0.21 | 0.549 |
20 < P ≤ 200 | 0.321 | 0.18 | 0.501 |
200 < P ≤ 1.000 | 0.314 | 0.15 | 0.464 |
Component | λ: Failure Rate [h−1] | µ: Repair Rate [h−1] | |
---|---|---|---|
PVS | PV Strings | 2.43 × 10−5 | 2.3 × 10−4 |
SPR | String Protection | 0.313 × 10−6 | 2.08 × 10−2 |
DCD | DC Disconnector | 0.2 × 10−6 | 2.08 × 10−2 |
SPD | Surge Protection | 0.313 × 10−6 | 2.08 × 10−2 |
ACB | AC Circuit Breaker | 5.71 × 10−6 | 2.08 × 10−2 |
GPR | Grid Protection | 5.71 × 10−6 | 2.08 × 10−2 |
ACD | AC Disconnector | 0.034 × 10−6 | 2.08 × 10−2 |
STB | String box | 0.015 × 10−3 | 2.08 × 10−2 |
DCB | Diff. Circuit Breaker | 5.71 × 10−6 | 2.08 × 10−2 |
TRA | Transformer | 1.4 × 10−6 | 2.28 × 10−4 |
INV | Inverter | Aging Weibull | 1.7 × 10−3 |
Initialization Script |
---|
# Initialization of global setting. The variables are used within the Hybrid-Pair model in Simulink |
1: InitHS(); # call a method that load and randomize the input historical series |
2: InitDP(); # call a method to initialize the parameters used in the Simulink deterministic block |
3: InitSP(); # call a method to initialize the parameters of the Basic Events in the Simulink stochastic block |
4: iter = 0; # Monte Carlo iteration counter |
5: N_ITER = 1000000; #max number of iterations |
6: estimator = 0; # global variable to adopt as estimator |
7: iterEstimator = 0; # variable to adopt as estimator within the nth iteration |
8: error = 0; # global variable to adopt to evaluate the error |
9: alfa_conf = 0.99; # is the confidence level used to evaluate if the error is within the confidence interval |
10: missionTime = 40173; # the unit of measure (hours) has to be the same of the failure/repair rates |
11: deltaT = 1; # this corresponds with the integration-step (in hours) of the simulation process |
12: bdroot = ‘hybrid_pair_1’; # this variable handles the Simulink hybrid-pair model that starts the simulation |
13: set_param (bdroot,’SimulationCommand’,’Update’); #this command updates the variables of the Simulink models that are set in the Matlab scripts |
14: set_param (bdroot,’SimulationCommand’,’Start’); #this command gives the control to the Simulink engine and restart the simulation |
NextEventBE Script |
---|
1: set_param(bdroot,’SimulationCommand’,’Stop’); |
2: if (currentStatus == 1) #the status of the Basic Event has been GOOD until the assertion raised |
3: currentStatus = 0; # update the status neglecting the GOOD |
4: nextBEEventTime = InvertRepairDistribution(repairRate); # find the next repair time |
5: else |
6: currentStatus = 1; # update the status neglecting the BAD |
7: nextBEEventTime = InvertFaultDistribution(failureRate); #find the next failure time |
8: end |
9: set_param (bdroot,’SimulationCommand’,’Update’); #this command updates the variables of the Simulink models that are set in the Matlab scripts |
10: set_param (bdroot,’SimulationCommand’,’Start’); #this command gives the control to the Simulink engine and start the simulation of the first iteration |
MissionTimeElapsed Script |
---|
# Initialization of global setting. The variables are used within the Hybrid-Pair model in Simulink |
1: if (iter<N_ITER) |
2: set_param(bdroot,’SimulationCommand’,’Stop’) |
3: UpdateGlobalVariables(); |
4: completed = VerifySimulationAccuracy(); |
5: if (completed==0) |
6: iter = iter + 1; |
7: iterEstimator = 0; |
8: if (iter%2==1) # select the Simulink hybrid_pair model of the next iteration |
9: bdroot = ‘hybrid_pair_2’; |
10: else |
11: bdroot = ‘hybrid_pair_1’; |
12: end |
13: InitSP(); # initialize the parameters of the Basic Events in the Simulink stochastic block |
14: InitDP(); # initialize the parameters used in the Simulink deterministic block |
15: InitHS(); # load and randomize the input historical series |
16: iterEstimator = 0; # reset the estimator for the next iteration |
17: set_param (bdroot,’SimulationCommand’,’Update’); |
18: set_param (bdroot,’SimulationCommand’,’Start’); |
19: else |
20: disp (‘Simulation Completed. Accuracy required reached’); |
21: end |
22: end |
23: disp (‘Simulation over. Accuracy required not reached’); |
Year | Real Prod. (kWh) | Payback (€) | Deterministic (kWh) | Payback (€) | SHyFTA (kWh) | Payback (€) |
---|---|---|---|---|---|---|
1 | 534,844 | 248,168 | 552,606 | 256,409 | 532,777 (±829) | 247,208 (±378) |
2 | 1,164,600 | 540,374 | 1,213,319 | 562,980 | 1,163,503 (±1909) | 539,865 (±879) |
3 | 1,765,200 | 819,053 | 1,873,664 | 869,380 | 1,791,692 (±3030) | 831,345 (±1394) |
4 | 2,375,546 | 1,102,253 | 2,487,950 | 1,154,409 | 2,375,685 (±4115) | 1,102,318 (±1893) |
4.6 * | 2,806,253 | 1,302,101 | 2,929,946 | 1,359,495 | 2,809,286 (±4681) | 1,303,509 (±2153) |
Year | Deterministic (kWh) | Payback (€) | SHyFTA (kWh) | Payback (€) |
---|---|---|---|---|
5 | 3,151,996 | 1,462,526 | 3,005,940 (±5166) | 1,394,756 (±2375) |
10 | 6,111,600 | 2,835,782 | 5,817,056 (±10,270) | 2,699,114 (±4724) |
15 | 8,955,165 | 4,155,197 | 8,516,286 (±15,352) | 3,951,557 (±7062) |
20 | 11,682,162 | 5,420,523 | 11,137,157 (±20,480) | 5,167,641 (±9421) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiacchio, F.; Famoso, F.; D’Urso, D.; Brusca, S.; Aizpurua, J.I.; Cedola, L. Dynamic Performance Evaluation of Photovoltaic Power Plant by Stochastic Hybrid Fault Tree Automaton Model. Energies 2018, 11, 306. https://doi.org/10.3390/en11020306
Chiacchio F, Famoso F, D’Urso D, Brusca S, Aizpurua JI, Cedola L. Dynamic Performance Evaluation of Photovoltaic Power Plant by Stochastic Hybrid Fault Tree Automaton Model. Energies. 2018; 11(2):306. https://doi.org/10.3390/en11020306
Chicago/Turabian StyleChiacchio, Ferdinando, Fabio Famoso, Diego D’Urso, Sebastian Brusca, Jose Ignacio Aizpurua, and Luca Cedola. 2018. "Dynamic Performance Evaluation of Photovoltaic Power Plant by Stochastic Hybrid Fault Tree Automaton Model" Energies 11, no. 2: 306. https://doi.org/10.3390/en11020306
APA StyleChiacchio, F., Famoso, F., D’Urso, D., Brusca, S., Aizpurua, J. I., & Cedola, L. (2018). Dynamic Performance Evaluation of Photovoltaic Power Plant by Stochastic Hybrid Fault Tree Automaton Model. Energies, 11(2), 306. https://doi.org/10.3390/en11020306