Optimized Proportional-Integral-Derivative Controller for Upper Limb Rehabilitation Robot
<p>(<b>a</b>) Shoulder abduction and adduction, (<b>b</b>) Shoulder Extension/Flexion, (<b>c</b>) Shoulder External and Internal rotation [<a href="#B22-electronics-08-00826" class="html-bibr">22</a>].</p> "> Figure 1 Cont.
<p>(<b>a</b>) Shoulder abduction and adduction, (<b>b</b>) Shoulder Extension/Flexion, (<b>c</b>) Shoulder External and Internal rotation [<a href="#B22-electronics-08-00826" class="html-bibr">22</a>].</p> "> Figure 2
<p>3D CAD Model of Robot.</p> "> Figure 3
<p>(<b>a</b>) DH convention for frame assignment, (<b>b</b>) Kinematics of the Robotic Arm.</p> "> Figure 4
<p>Internal model of DC motor.</p> "> Figure 5
<p>RAX-1 Mechanical design.</p> "> Figure 6
<p>(<b>a</b>) HMI displaying rehabilitation training modes, (<b>b</b>) HMI displaying selection for shoulder exercise, (<b>c</b>) System Block Diagram.</p> "> Figure 6 Cont.
<p>(<b>a</b>) HMI displaying rehabilitation training modes, (<b>b</b>) HMI displaying selection for shoulder exercise, (<b>c</b>) System Block Diagram.</p> "> Figure 7
<p>Controller Board.</p> "> Figure 8
<p>2-DOF PID block diagram.</p> "> Figure 9
<p>PSO Optimization Flow.</p> "> Figure 10
<p>ABC Optimization Flow.</p> "> Figure 11
<p>General Structure of the proposed control System Diagram.</p> "> Figure 12
<p>Step response of Joint 1 using ISE, IAE, ITSE and ITAE.</p> "> Figure 13
<p>Step response of Joint 2 using ISE, IAE, ITSE and ITAE.</p> "> Figure 14
<p>Nyquist plot for closed loop system of joint 1 and joint 2.</p> "> Figure 15
<p>A subject performing exercise with assistance of exoskeleton device.</p> "> Figure 16
<p>(<b>a</b>) Shoulder Internal/External Rotation, (<b>b</b>) Current driven from the motor and Disturbance applied by first subject.</p> "> Figure 17
<p>(<b>a</b>) Shoulder Abduction/ Adduction, (<b>b</b>) Current driven from the motor and Disturbance applied by second subject.</p> "> Figure 18
<p>(<b>a</b>) Shoulder Extension/Flexion, (<b>b</b>) Current driven from the motor and Disturbance applied by third subject.</p> "> Figure 19
<p>(<b>a</b>) Response of the system with ABC optimized PID and tuned using Zeigler-Nichols, (<b>b</b>) Error of the system with ABC optimized PID and tuned using Zeigler-Nichols.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. System Design
- The zi − 1 lies along the axis of motion of the ith joint.
- The xi axis is normal to the zi − 1 axis and pointing away from it.
- ai (Link length) is a distance measured along the xi axis from the point of intersection of xi axis with zi − 1 axis to the origin of frame (i).
- αi (Link Twist) is the angle between the joint axes zi − 1 and zi axes measured about xi axis in the right-hand orientation.
- di (offset) is the distance measured along zi − 1 axis from the origin of frame (i − 1) to the intersection of xi axis with zi − 1 axis.
- θi (Joint angle) is the angle between xi − 1 and xi axes measured about the zi − 1 axis in the right-hand sense.
2.2. Dynamic Model
2.3. Linearized Model
2.4. Motor Model
3. The Exoskeleton Platform
3.1. Mechanical Structure
3.2. Actuators and Sensors
3.3. Control Implementation
4. The Control Algorithm
4.1. Proportional Integrator Derivative (PID) Controller
4.2. Particle Swam Optimization (PSO)
4.3. Artificial Bee Colony (ABC)
5. Results and Discussions
5.1. Robustness Consideration
5.2. Simulation Setup
5.3. Experimental Evaluation for RAX-1
5.4. Comparison of the PID Controllers Optimized with ABC and the Zeigler-Nichols Method
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Page, S.J.; Levine, P.; Leonard, A.C. Modified constraint-induced therapy in acute stroke: A randomized controlled pilot study. Neurorehabilit. Neural Repair 2005, 19, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.R. Incidence and characteristics of total stroke in the United States. BMC Neurol. 2001, 1, 2. [Google Scholar] [CrossRef]
- Members, W.G.; Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Blaha, M.J.; Dai, S.; Ford, E.S.; Fox, C.S. Heart disease and stroke statistics—2014 update: A report from the American Heart Association. Circulation 2014, 129, e28. [Google Scholar]
- Bingül, Z.; Karahan, O. A Fuzzy Logic Controller tuned with PSO for 2 DOF robot trajectory control. Expert Syst. Appl. 2011, 38, 1017–1031. [Google Scholar] [CrossRef]
- Bharat, S.; Ganguly, A.; Chatterjee, R.; Basak, B.; Sheet, D.K.; Ganguly, A. A Review on Tuning Methods for PID Controller. Asian J. Converg. Technol. 2019, 3, 17–22. [Google Scholar]
- Ali, A.; Ahmed, S.F.; Kadir, K.A.; Joyo, M.K.; Yarooq, R.S. Fuzzy PID controller for upper limb rehabilitation robotic system. In Proceedings of the 2018 IEEE International Conference on Innovative Research and Development (ICIRD), Bangkok, Thailand, 11–12 May 2018; pp. 1–5. [Google Scholar]
- Kudinov, Y.; Kolesnikov, V.; Pashchenko, F.; Pashchenko, A.; Papic, L. Optimization of Fuzzy PID Controller’s Parameters. Procedia Comput. Sci. 2017, 103, 618–622. [Google Scholar] [CrossRef]
- Leng, G.; McGinnity, T.M.; Prasad, G. Design for self-organizing fuzzy neural networks based on genetic algorithms. IEEE Trans. Fuzzy Syst. 2006, 14, 755–766. [Google Scholar] [CrossRef]
- Juang, C.-F.; Lu, C.-M.; Lo, C.; Wang, C.-Y. Ant colony optimization algorithm for fuzzy controller design and its FPGA implementation. IEEE Trans. Ind. Electron. 2008, 55, 1453–1462. [Google Scholar] [CrossRef]
- Das, M.T.; Dulger, L.C.; Das, G.S. Robotic applications with particle swarm optimization (pso). In Proceedings of the 2013 International Conference on Control, Decision and Information Technologies (CoDIT), Hammamet, Tunisia, 6–8 May 2013; pp. 160–165. [Google Scholar]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-tr06; Erciyes University, Engineering Faculty, Computer Engineering Department: Kayseri, Turkey, 2005. [Google Scholar]
- Iruthayarajan, M.W.; Baskar, S. Optimization of PID Parameters Using Genetic Algorithm and Particle Swarm Optimization; Curran Associates: New York, NY, USA, 2007. [Google Scholar]
- Elbeltagi, E.; Hegazy, T.; Grierson, D. Comparison among five evolutionary-based optimization algorithms. Adv. Eng. Inform. 2005, 19, 43–53. [Google Scholar] [CrossRef]
- Shen, Z.; Zhou, J.; Gao, J.; Song, R. Fuzzy Logic Based PID Control of a 3 DOF Lower Limb Rehabilitation Robot. In Proceedings of the 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Tianjin, China, 9–13 July 2018; pp. 818–821. [Google Scholar]
- Wu, J.; Huang, J.; Wang, Y.; Xing, K.; Xu, Q. Fuzzy PID control of a wearable rehabilitation robotic hand driven by pneumatic muscles. In Proceedings of the 2009 International Symposium on Micro-NanoMechatronics and Human Science, Nagoya, Japan, 8–11 November 2009; pp. 408–413. [Google Scholar]
- Wu, J.; Wang, Y.; Huang, J.; Xing, K. Artificial Bee Colony algorithm based Auto-Disturbance Rejection Control for rehabilitation robotic arm driven by PM-TS actuator. In Proceedings of the 2012 International Conference on Modelling, Identification & Control (ICMIC), Hubei, China, 24–26 June 2012; pp. 802–807. [Google Scholar]
- Tarmizi, W.F.W.; Elamvazuthi, I.; Perumal, N.; Nurhanim, K.; Khan, M.A.; Parasuraman, S.; Nandedkar, A. A Particle Swarm Optimization-PID controller of a DC Servomotor for Multi-Fingered Robot Hand. In Proceedings of the 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), Ipoh, Malaysia, 25–27 September 2016; pp. 1–6. [Google Scholar]
- Annisa, J.; Darus, I.M.; Tokhi, M.; Mohamaddan, S. Implementation of PID Based Controller Tuned by Evolutionary Algorithm for Double Link Flexible Robotic Manipulator. In Proceedings of the 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA), Kuching, Malaysia, 15–17 August 2018; pp. 1–5. [Google Scholar]
- Yan, F.; Wang, Y.; Xu, W.; Chen, B. Time delay control of cable-driven manipulators with artificial bee colony algorithm. Trans. Can. Soc. Mech. Eng. 2018, 42, 177–186. [Google Scholar] [CrossRef]
- Bingul, Z.; Karahan, O. Comparison of PID and FOPID controllers tuned by PSO and ABC algorithms for unstable and integrating systems with time delay. Optim. Control Appl. Methods 2018, 39, 1431–1450. [Google Scholar] [CrossRef]
- Begum, K.G.; Rao, A.S.; Radhakrishnan, T. Maximum sensitivity based analytical tuning rules for PID controllers for unstable dead time processes. Chem. Eng. Res. Des. 2016, 109, 593–606. [Google Scholar] [CrossRef]
- Biodex, Manual, System 3 and 4 Upper Extremity Hemiparetic Attachments—Operation. Available online: https://www.biodex.com/physical-medicine/products/dynamometers/system-4-accessories/ue-hemiparetic-attachments (accessed on 3 December 2018).
- Shah, J.A.; Rattan, S.; Nakra, B. End-effector position analysis using forward kinematics for 5 DOF pravak robot arm. IAES Int. J. Robot. Autom. 2013, 2, 112. [Google Scholar] [CrossRef]
- Lai, L.-C.; Chang, Y.-C.; Jeng, J.-T.; Huang, G.-M.; Li, W.-N.; Zhang, Y.-S. A PSO method for optimal design of PID controller in motion planning of a mobile robot. In Proceedings of the 2013 International Conference on Fuzzy Theory and Its Applications (iFUZZY), Taipei, Taiwan, 6–8 December 2013; pp. 134–139. [Google Scholar]
- Yousof, Z.M.; Billah, M.M.; Joyo, K.M.; Kadir, K.; Qisti, M. Milestone 5 Report: Robotic System Development, Integration and Testing Product Testing; Under the Project of Building Our Robotic Competitiveness in Medical Healthcare: Development of Robot for Assisted Recovery and Rehabilitation; Technology Park Malaysia Engineering Sdn Bhd: Kuala Lumpur, Malaysia, 2018. [Google Scholar]
- Czarkowski, D.; O’Mahony, T. Intelligent controller design based on gain and phase margin specifications. In Proceedings of the Irish Signals and Systems Conference 2004, Belfast, Ireland, 30 June–2 July 2004. [Google Scholar]
- Aouf, A.; Boussaid, L.; Sakly, A. A PSO algorithm applied to a PID controller for motion mobile robot in a complex dynamic environment. In Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS), Monastir, Tunisia, 8–10 May 2017; pp. 1–7. [Google Scholar]
- Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, D.; Jarial, S. A Review on Artificial Bee Colony Algorithms and Their Applications to Data Clustering. Cybern. Inf. Technol. 2017, 17, 3–28. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, A.M.; Al-Saif, A. Modeling, simulation and control of 2-R robot. Glob. J. Res. Eng. 2014, 14, 49–54. [Google Scholar]
- Naidu, K.; Mokhlis, H.; Bakar, A.A. Multiobjective optimization using weighted sum artificial bee colony algorithm for load frequency control. Int. J. Electr. Power Energy Syst. 2014, 55, 657–667. [Google Scholar] [CrossRef]
Limb | Therapeutic Exercise | ROM of Limb |
---|---|---|
Shoulder | Flexion/extension | 0°/180° |
External/internal rotation | 50°/90° | |
Abduction/adduction | 0°/180° |
Parameters | Joint 1 | Joint 2 |
---|---|---|
Kτ (mN-m/A) | 70.5 | 70.5 |
La (mH) | 0.264 | 0.264 |
Ra (Ohm) | 0.343 | 0.343 |
Kb (V-s/rad) | 0.023 | 0.023 |
J (g·cm²) | 306 × 10−6 | 306 × 10−6 |
Bm (N.sec/m) | 0.03 | 0.03 |
Gear Ratio (Nm/Nl) | 1/160 | 1/150 |
Parameter | Value |
---|---|
Number of particles | 20 |
Number of iterations | 150 |
0.4 | |
0.9 | |
2 | |
2 |
Parameter | Value |
---|---|
Colony Size | 20 |
Number of iterations | 150 |
(Abandonment Limit) | 72 |
(Acceleration coefficient) | 1 |
Parameters | Joint 1 | Joint 2 |
---|---|---|
0.01 < < 10 | 0.01 < < 20 | |
0.01 < < 10 | 0.01 < < 20 | |
0.01 < < 10 | 0.01 < < 20 | |
0.01 < < 1 | 0.01 < < 1 | |
0.01 < < 1 | 0.01 < < 1 | |
100 | 200 |
Controller | Objective Function | c | ||||
---|---|---|---|---|---|---|
ABC-PID | ISE | 7.271 | 9.7748 | 10 | 0.9533 | 0.9826 |
IAE | 10 | 9.9485 | 5.8094 | 0.9521 | 0.9198 | |
ITSE | 7.003 | 9.9345 | 10 | 0.9401 | 0.9993 | |
ITAE | 7.9219 | 10 | 2.339 | 0.8137 | 0.6124 | |
PSO-PID | ISE | 6.8358 | 10 | 10 | 1 | 1 |
IAE | 9.9531 | 8.8488 | 6.0963 | 1 | 0.9535 | |
ITSE | 10 | 10 | 9.9951 | 1 | 1 | |
ITAE | 10 | 10 | 3.3444 | 1 | 1 | |
ZN-PID | - | 2.7 | 2.5714 | 0.7087 | 1 | 1 |
Controller | Objective Function | c | ||||
---|---|---|---|---|---|---|
ABC-PID | ISE | 8.7359 | 10 | 0.7251 | 1 | 0.9717 |
IAE | 7.229 | 10 | 0.5594 | 0.9999 | 0.7415 | |
ITSE | 10 | 10 | 0.6289 | 1 | 0.6926 | |
ITAE | 4.8276 | 10 | 0.5214 | 1 | 0.8247 | |
PSO-PID | ISE | 11.011 | 20 | 1.1377 | 1 | 1 |
IAE | 6.1177 | 20 | 0.5864 | 1 | 0.9625 | |
ITSE | 4.0505 | 20 | 0.4883 | 0.1 | 0.8429 | |
ITAE | 4.7981 | 20 | 0.3883 | 0.1 | 0.1 | |
ZN-PID | - | 1.92 | 2.7429 | 0.3360 | 1 | 1 |
Controller | Integral Absolute Error | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Joint 1 | Joint 2 | |||||||||||||
Best Cost | O.S (%) | R.T (s) | S.T (s) | Disturbance O.S (%) | Ms | Normalized Average | Best Cost | O.S (%) | R.T (s) | S.T (s) | Disturbance O.S (%) | Ms | Normalized Average | |
PSO-PID | 0.219 | 3.1780 | 0.0641 | 0.3 | 6.6 | 1.24 | 0.2326 | 0.0809 | 22.0742 | 0.0159 | 0.1452 | 11.5 | 1.62 | 0.2425 |
ABC-PID | 0.16375 | 0 | 0.0750 | 0.15 | 6.5 | 1.23 | 0.1643 | 0.1304 | 4.4458 | 0.0211 | 0.1123 | 11.5 | 1.62 | 0.1541 |
Integral Squared Error | ||||||||||||||
PSO- PID | 0.0292 | 6.8484 | 0.0349 | 0.9244 | 6.5 | 1.37 | 0.4346 | 0.0192 | 46.2938 | 0.0093 | 0.1243 | 6.9 | 2.0 | 0.3583 |
ABC-PID | 0.0283 | 4.9856 | 0.0360 | 0.1058 | 6.4 | 1.37 | 0.2476 | 0.0224 | 29.9438 | 0.0131 | 0.1115 | 9.6 | 1.80 | 0.1983 |
Integral Time Squared Error | ||||||||||||||
PSO- PID | 0.1065 | 7.7363 | 0.0345 | 0.254 | 5.5 | 1.38 | 0.3771 | 0.2021 | 3.0304 | 0.5020 | 0.9666 | 15.4 | 1.50 | 0.3637 |
ABC-PID | 0.1457 | 6.5768 | 0.0350 | 0.1217 | 6.4 | 1.37 | 0.2762 | 0.0936 | 5.9488 | 0.0192 | 0.1082 | 8.7 | 1.80 | 0.2863 |
Integral Time Absolute Error | ||||||||||||||
PSO- PID | 1.8319 | 17.2245 | 0.0958 | 0.9244 | 7.7 | 1.15 | 0.6496 | 1.0296 | 0 | 0.4208 | 0.6515 | 15.1 | 1.43 | 0.5296 |
ABC-PID | 1.7792 | 1.8361 | 0.2748 | 0.4130 | 10.2 | 1.11 | 0.5541 | 1.5827 | 5.1007 | 0.0216 | 0.0954 | 15.6 | 1.53 | 0.3708 |
- | ||||||||||||||
ZN-PID | - | 51.4168 | 0.2819 | 4.5369 | 51.1 | 1.91 | - | - | 10.2841 | 0.0284 | 1.4003 | 37.1 | 1.3168 | - |
Parameters | Subject 1 | Subject 2 | Subject 3 |
---|---|---|---|
age | 32 | 31 | 28 |
body mass (kg) | 74 | 70 | 64 |
Height (foot) | 5.74 | 5.91 | 5.68 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joyo, M.K.; Raza, Y.; Ahmed, S.F.; Billah, M.M.; Kadir, K.; Naidu, K.; Ali, A.; Mohd Yusof, Z. Optimized Proportional-Integral-Derivative Controller for Upper Limb Rehabilitation Robot. Electronics 2019, 8, 826. https://doi.org/10.3390/electronics8080826
Joyo MK, Raza Y, Ahmed SF, Billah MM, Kadir K, Naidu K, Ali A, Mohd Yusof Z. Optimized Proportional-Integral-Derivative Controller for Upper Limb Rehabilitation Robot. Electronics. 2019; 8(8):826. https://doi.org/10.3390/electronics8080826
Chicago/Turabian StyleJoyo, M. Kamran, Yarooq Raza, S. Faiz Ahmed, M. M. Billah, Kushsairy Kadir, Kanendra Naidu, Athar Ali, and Zukhairi Mohd Yusof. 2019. "Optimized Proportional-Integral-Derivative Controller for Upper Limb Rehabilitation Robot" Electronics 8, no. 8: 826. https://doi.org/10.3390/electronics8080826
APA StyleJoyo, M. K., Raza, Y., Ahmed, S. F., Billah, M. M., Kadir, K., Naidu, K., Ali, A., & Mohd Yusof, Z. (2019). Optimized Proportional-Integral-Derivative Controller for Upper Limb Rehabilitation Robot. Electronics, 8(8), 826. https://doi.org/10.3390/electronics8080826