Super-Regenerative Receiver Wake-Up Radio Solution for 5G New Radio Communications
<p>Super-regenerative (SR) wake-up radio (WuR) concept. When the node identification code is received, an interrupt is triggered to activate the main radio chip.</p> "> Figure 2
<p>Selected points (circled in blue) from the QPSK, 16-QAM, and 256-QAM constellations that are used to generate the wake-up signal (WuS).</p> "> Figure 3
<p>Damping function (<b>top</b>) and signal generated at the SRO (<b>bottom</b>) in the case study for <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math> = 2 (<math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>q</mi> </msub> <mo>=</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>17.86</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>s, active quench period <math display="inline"><semantics> <mrow> <mo>=</mo> <mn>8.33</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>s). The dashed line represents the sensitivity function of the SRO.</p> "> Figure 4
<p>Subcarrier distribution in the frequency domain (<b>top</b>) and the corresponding OFDM symbol in the time domain (<b>bottom</b>) for <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math> = 1, one resource block (RB), and 256-QAM. There is a poor match with the optimal pulse.</p> "> Figure 5
<p>Subcarrier distribution in the frequency domain (<b>top</b>) and the corresponding OFDM symbol in the time domain (<b>bottom</b>) for <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math> = 1, four RBs, and 256-QAM. There is a good match with the optimal pulse, which exhibits a low duty cycle.</p> "> Figure 6
<p>Subcarrier distribution in the frequency domain (<b>top</b>) and the corresponding OFDM symbol in the time domain (<b>bottom</b>) for <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math> = 2, two RBs, and 256-QAM. There is a good match with the optimal pulse, which exhibits a higher duty cycle.</p> "> Figure 7
<p>Subcarrier distribution in the frequency domain (<b>top</b>) and the corresponding OFDM symbol in the time domain (<b>bottom</b>) for <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math> = 3, one RB, and 256-QAM. There is a good match with the optimal pulse, which exhibits an even higher duty cycle.</p> "> Figure 8
<p>Subcarrier distribution in the frequency domain (<b>top</b>) and the corresponding OFDM symbol in the time domain (<b>bottom</b>) for <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math> = 4, one RB, and 256-QAM. There is a good match with the optimal pulse, which exhibits a maximum duty cycle.</p> "> Figure 9
<p>Subcarrier distribution in the frequency domain (<b>top</b>) and the corresponding OFDM symbol in the time domain (<b>bottom</b>) for <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math> = 4, two RBs, and 256-QAM. The pulse differs from the optimal one due to an excessive number of resource blocks.</p> "> Figure 10
<p>Subcarrier distribution in the frequency domain (<b>top</b>) and the corresponding OFDM symbol in the time domain (<b>bottom</b>) for <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math> = 4, one RB, and 16-QAM. Several significant secondary lobes appear.</p> "> Figure 11
<p>Subcarrier distribution in the frequency domain (<b>top</b>) and the corresponding OFDM symbol in the time domain (<b>bottom</b>) for <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math> = 4, one RB, and QPSK. The pulse shape is degraded compared to that obtained for the other modulation schemes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Energy Consumption Reduction Strategies in Wireless Communications
2.2. Wake-Up Radio in 5G Communications
2.3. The Super-Regenerative Receiver in 5G Wake-Up Radio
2.4. Generation of Optimal Wake-Up Signals for the Super-Regenerative Wake-Up Receiver
2.4.1. Pulse Generation at gNB
2.4.2. Optimal Pulses for the SR WuRx
2.5. A Case Study
3. Results
3.1. Influence of Numerology and the Number of Resource Blocks
3.2. Influence of the Modulation Scheme
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Ding, N.; Jindal, A.; Hu, Y.C.; Gupta, M.; Vannithamby, R. Smartphone Energy Drain in the Wild: Analysis and Implications. SIGMETRICS Perform. Eval. Rev. 2015, 43, 151–164. [Google Scholar] [CrossRef]
- Oller, J.; Demirkol, I.; Casademont, J.; Paradells, J.; Gamm, G.U.; Reindl, L. Has Time Come to Switch From Duty-Cycled MAC Protocols to Wake-Up Radio for Wireless Sensor Networks? IEEE/ACM Trans. Netw. 2016, 24, 674–687. [Google Scholar] [CrossRef]
- McCormick, D.K. Preview: IEEE Technology Report on Wake-Up Radio: An Application, Market, and Technology Impact Analysis of Low-Power/Low-Latency 802.11 Wireless LAN Interfaces; IEEE Press/Standards Information Network: Piscataway, NJ, USA, 2017; pp. 1–11. [Google Scholar] [CrossRef]
- Fumtchum, C.A.; Hutu, F.D.; Tsafack, P.; Villemaud, G.; Tanyi, E. Towards a Battery-Free Wake-up Radio. Electronics 2021, 10, 2449. [Google Scholar] [CrossRef]
- Mercier, P.P.; Calhoun, B.H.; Wang, P.H.P.; Dissanayake, A.; Zhang, L.; Hall, D.A.; Bowers, S.M. Low-Power RF Wake-up Receivers: Analysis, Tradeoffs, and Design. IEEE Open J. Solid-State Circuits Soc. 2022, 2, 144–164. [Google Scholar] [CrossRef]
- Ketata, I.; Ouerghemmi, S.; Fakhfakh, A.; Derbel, F. Design and Implementation of Low Noise Amplifier Operating at 868 MHz for Duty Cycled Wake-Up Receiver Front-End. Electronics 2022, 11, 3235. [Google Scholar] [CrossRef]
- Zhang, T.; Afshang, M.; Mozaffari, M.; Wang, Y.P.E. Toward Zero-Energy Devices: Waveform Design for Low-Power Receivers. IEEE Commun. Lett. 2023, 27, 2038–2042. [Google Scholar] [CrossRef]
- Moncunill-Geniz, F.; Pala-Schonwalder, P.; Mas-Casals, O. A generic approach to the theory of superregenerative reception. IEEE Trans. Circuits Syst. I Regul. Pap. 2005, 52, 54–70. [Google Scholar] [CrossRef]
- Moncunill-Geniz, F.X.; Pala-Schonwalder, P.; Dehollain, C.; Joehl, N.; Declercq, M. An 11-Mb/s 2.1-mW Synchronous Superregenerative Receiver at 2.4 GHz. IEEE Trans. Microw. Theory Tech. 2007, 55, 1355–1362. [Google Scholar] [CrossRef]
- Moncunill-Geniz, F.X.; Bonet-Dalmau, J.; Del Águila Lopez, F.; Demirkol, I.; Palà-Schönwälder, P. Super-Regenerative Receiver for OFDM Communication. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 28 May–1 June 2022; pp. 1843–1847. [Google Scholar] [CrossRef]
- 3GPP. Study on Low-Power Wake-Up Signal and Receiver for NR. Technical Report 38.869, Release 18, 3GPP, Specification Series. 2023. Available online: https://www.3gpp.org/dynareport?code=38-series.htm (accessed on 3 November 2023).
- Apple. On Rel-18 Low Power Wake Up Radio; Technical Report RP-212367, 3GPP, RAN Meeting #93-e; Apple: Los Altos, CA, USA, 2021. [Google Scholar]
- Ericsson. Motivation for Rel-18 WI on Enhanced RedCap; Technical Report RWS-210313, 3GPP, TSG RAN Rel-18 Workshop; Ericsson: Stockholm, Sweden, 2021. [Google Scholar]
- Bdiri, S.; Derbel, F.; Kanoun, O. An 868 MHz 7.5 µW wake-up receiver with −60 dBm sensitivity. J. Sensors Sens. Syst. 2016, 5, 433–446. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, P.H.P.; Gao, L.; Sen, P.; Kim, Y.H.; Rebeiz, G.M.; Hall, D.A.; Mercier, P.P. 24.5 A 4.5nW wake-up radio with −69 dBm sensitivity. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 416–417. [Google Scholar] [CrossRef]
- Fu, X.; El-Sankary, K.; Ge, Y.; Yin, Y.; Truhachev, D. A Blind Background Calibration Technique for Super-Regenerative Receivers. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 344–348. [Google Scholar] [CrossRef]
- Kong, F.; Ghovanloo, M.; Durgin, G.D. An Adaptive Impedance Matching Transmitter for a Wireless Intraoral Tongue-Controlled Assistive Technology. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 240–244. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, C.T.M. Super-Regenerative Oscillator Integrated Metamaterial Leaky Wave Antenna for Multi-Target Vital Sign and Motion Detection. IEEE J. Electromagn. Microwaves Med. Biol. 2022, 6, 238–245. [Google Scholar] [CrossRef]
- Pekcokguler, N.; Dundar, G.; Dehollain, C. A Novel Area Efficient Inductorless Super-Regenerative Receiver Front-End for Medical Brain Implants. In Proceedings of the 2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Funchal, Portugal, 3–5 July 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Yin, Y.; Fu, X.; El-Sankary, K. A PVT-Robust Super-Regenerative Receiver with Background Frequency Calibration and Concurrent Quenching Waveform. Electronics 2019, 8, 1119. [Google Scholar] [CrossRef]
- Hahn, L.; Vossiek, M.; Carlowitz, C. A Subharmonic Super-Regenerative FMCW Radar With Improved Intermodulation Efficiency for Applications Beyond Cut-Off Frequency. IEEE Trans. Microw. Theory Tech. 2023, 1–15. [Google Scholar] [CrossRef]
- Ghaleb, H.; Carlowitz, C.; Fritsche, D.; Stärke, P.; Protze, F.; Carta, C.; Ellinger, F. A 180-GHz Super-Regenerative Oscillator With up to 58 dB Gain for Efficient Phase and Amplitude Recovery. IEEE Trans. Microw. Theory Tech. 2020, 68, 2011–2019. [Google Scholar] [CrossRef]
- Garay, E.F.; Munzer, D.J.; Wang, H. A 150 GHz Lens-Free Large FoV Regenerative 2 × 2 Transceiver Array with 31Bidirectional Peer-to-Peer Link. IEEE J. Solid-State Circuits 2022, 57, 2102–2113. [Google Scholar] [CrossRef]
- Hernández, S.; Suárez, A. Envelope-Domain Analysis and Modeling of Super-Regenerative Oscillators. IEEE Trans. Microw. Theory Tech. 2018, 66, 3877–3893. [Google Scholar] [CrossRef]
- Sancho, S.; Hernández, S.; Suárez, A. Noise Analysis of Super-Regenerative Oscillators in Linear and Nonlinear Modes. IEEE Trans. Microw. Theory Tech. 2019, 67, 4955–4965. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, D.; Lee, K.Y.; Lee, S.G. A 2.4-GHz Super-Regenerative Transceiver With Selectivity-Improving Dual Q-Enhancement Architecture and 102-μW All-Digital FLL. IEEE Trans. Microw. Theory Tech. 2017, 65, 3287–3298. [Google Scholar] [CrossRef]
- Fuketa, H.; O’uchi, S.; Matsukawa, T. A 0.3-V 1-μW Super-Regenerative Ultrasound Wake-up Receiver with Power Scalability. IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 1027–1031. [Google Scholar] [CrossRef]
Numerology, | Subcarrier Spacing, | Resource Block Bandwidth | Symbol Duration |
---|---|---|---|
0 | 15 kHz | 180 kHz | 71.43 s |
1 | 30 kHz | 360 kHz | 35.71 s |
2 | 60 kHz | 720 kHz | 17.86 s |
3 | 120 kHz | 1.44 MHz | 8.93 s |
4 | 240 kHz | 2.88 MHz | 4.46 s |
SRO Quiescent Q | Reception Center Frequency, | ||
---|---|---|---|
700 MHz | 1.8 GHz | 6 GHz | |
= 10 | |||
2.86 s | 1.11 s | 333 ns | |
286 ns | 111 ns | 33.3 ns | |
= 30 | |||
8.58 s | 3.33 s | 1.00 s | |
858 ns | 333 ns | 100 ns | |
= 100 | |||
28.6 s | 11.1 s | 3.33 s | |
2.86 s | 1.11 s | 333 ns |
Quiescent Q, | Numerology, | ||||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | |
10 | 0.004 | 0.008 | 0.016 | 0.032 | 0.064 |
30 | 0.012 | 0.024 | 0.048 | 0.096 | 0.100 1 |
100 | 0.040 | 0.080 | 0.100 1 | 0.100 1 | 0.100 1 |
Parameter | Value |
---|---|
Reception center frequency, | 700 MHz |
Quench waveform | Sawtooth |
SRO quiescent quality factor, | 30 |
Mean damping value, | |
Peak-to-peak damping value, | |
Active quench period | |
8.33 s | |
4.17 s | |
−3 dB sensitivity function width (=optimal pulse width), /Standard deviation, | |
744 ns/447 ns | |
493 ns/296 ns | |
−3 dB RF reception bandwidth (=optimal pulse spectrum bandwidth)/Standard deviation, | |
593 kHz/356 kHz | |
895 kHz/537 kHz | |
Total SRO peak gain (continuous wave, dB) | 60 dB |
Numerology, | Number of RBs | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
0 | 5.54 | 2.80 | 1.46 | 0.73 | 0.34 |
1 | 2.80 | 0.73 | 0.15 | 0.03 | 0.02 |
2 | 0.73 | 0.03 | 0.02 | 0.04 | 0.06 |
3 | 0.03 | 0.04 | 0.08 | 0.12 | 0.16 |
4 | 0.01 | 0.06 | 0.11 | 0.16 | 0.21 |
Numerology and # of RBs | Modulation Scheme | |||
---|---|---|---|---|
QPSK | 16-QAM | 64-QAM | 256-QAM | |
= 0, 8 RB | 0.95 | 0.21 | 0.07 | 0.03 |
= 1, 4 RB | ||||
= 2, 2 RB | ||||
= 3, 1 RB | 0.94 | 0.18 | 0.06 | 0.03 |
= 4, 1 RB | 1.85 | 0.35 | 0.07 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moncunill-Geniz, F.X.; del-Águila-López, F.; Demirkol, I.; Bonet-Dalmau, J.; Palà-Schönwälder, P. Super-Regenerative Receiver Wake-Up Radio Solution for 5G New Radio Communications. Electronics 2023, 12, 5011. https://doi.org/10.3390/electronics12245011
Moncunill-Geniz FX, del-Águila-López F, Demirkol I, Bonet-Dalmau J, Palà-Schönwälder P. Super-Regenerative Receiver Wake-Up Radio Solution for 5G New Radio Communications. Electronics. 2023; 12(24):5011. https://doi.org/10.3390/electronics12245011
Chicago/Turabian StyleMoncunill-Geniz, Francesc Xavier, Francisco del-Águila-López, Ilker Demirkol, Jordi Bonet-Dalmau, and Pere Palà-Schönwälder. 2023. "Super-Regenerative Receiver Wake-Up Radio Solution for 5G New Radio Communications" Electronics 12, no. 24: 5011. https://doi.org/10.3390/electronics12245011
APA StyleMoncunill-Geniz, F. X., del-Águila-López, F., Demirkol, I., Bonet-Dalmau, J., & Palà-Schönwälder, P. (2023). Super-Regenerative Receiver Wake-Up Radio Solution for 5G New Radio Communications. Electronics, 12(24), 5011. https://doi.org/10.3390/electronics12245011