Control of Inhibition-Stabilized Oscillations in Wilson-Cowan Networks with Homeostatic Plasticity
<p>Mean-rate model of excitatory and inhibitory neurons exhibiting different dynamical regimes. (<b>a</b>) Wilson-Cowan circuit where a population of excitatory (E) neurons is coupled with inhibitory (I) neurons. Tonic activation is evenly applied to both populations. (<b>b</b>) The emergence of different dynamical regimes depends on <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>J</mi> </mrow> <mrow> <mi>E</mi> <mi>E</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>J</mi> </mrow> <mrow> <mi>E</mi> <mi>I</mi> </mrow> </msub> <mo>.</mo> </mrow> </semantics></math> Weak self-excitation (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>J</mi> </mrow> <mrow> <mi>E</mi> <mi>E</mi> </mrow> </msub> </mrow> </semantics></math> < 1) results in a stable non-ISN regime, while stronger <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>J</mi> </mrow> <mrow> <mi>E</mi> <mi>E</mi> </mrow> </msub> </mrow> </semantics></math> yields either an ISN or unstable state.</p> "> Figure 2
<p>Homeostatic plasticity admits stable solutions for ISN and non-ISN regimes. The set point of HP (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>E</mi> </mrow> <mrow> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>) and tonic activation (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mi>e</mi> <mi>x</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>) admit solutions (delineated by black and white dashed lines) that are stable and respect Dale’s law. Black and white circles provide an instance of each regime for recurrent excitation (<b>a</b>) and feedforward inhibition (<b>b</b>). For the parameters corresponding to the white circle in panel “a”, synaptic strengths settle to an ISN regime (<b>c</b>).</p> "> Figure 3
<p>Paradoxical deactivation of inhibitory cells in the ISN regime. A model with no plasticity captures the well-known paradoxical response observed in ISNs (<b>a</b>). With HP, the strength of tonic activation determines the resulting coupling between E and I populations (<b>b</b>). While weak tonic activation results in an ISN regime exhibiting a paradoxical response, strong tonic activation yields a non-ISN regime with no such response (<b>c</b>). The change in firing rate (<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> </mrow> </semantics></math> rate) from baseline to stimulation shows combinations of excitatory and inhibitory couplings where the paradoxical response is strongest (<b>d</b>). Filled grey circle: instance of a non-ISN state; filled black circle: ISN state.</p> "> Figure 4
<p>Phase offset between E and I populations in response to an external input. With a forced external oscillator, a tonic activation applied to I cells results in a large phase offset in a non-ISN state and a small offset in an ISN state (<b>a</b>). The phase offset (<math display="inline"><semantics> <mrow> <mo>∆</mo> </mrow> </semantics></math> phase) between E and I populations depends on the strength of excitatory and inhibitory couplings, which collectively determine the state of the network (<b>b</b>). Filled grey circle: non-ISN; filled black circle: ISN.</p> "> Figure 5
<p>Damped oscillations in the ISN state. Damped oscillations are present in the ISN but not in the non-ISN regime (<b>a</b>), as shown by power spectra in both regimes (<b>b</b>). Mean gamma (30–50 Hz) power (<b>c</b>) and phase offset (<b>d</b>) increase with stronger excitatory coupling. In panels (<b>a</b>–<b>d</b>), damped oscillations were obtained by setting the decay rate of activity to <math display="inline"><semantics> <mrow> <mi>α</mi> </mrow> </semantics></math> = 0.25. Weights were set to <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>J</mi> </mrow> <mrow> <mi>E</mi> <mi>E</mi> </mrow> </msub> </mrow> </semantics></math> = 0.5 (non-ISN) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>J</mi> </mrow> <mrow> <mi>E</mi> <mi>E</mi> </mrow> </msub> </mrow> </semantics></math> = 1.5 (ISN), <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>J</mi> </mrow> <mrow> <mi>E</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = −1.5, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>J</mi> </mrow> <mrow> <mi>I</mi> <mi>E</mi> </mrow> </msub> </mrow> </semantics></math> = 1.5, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>J</mi> </mrow> <mrow> <mi>I</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = −1.1.</p> "> Figure 6
<p>Asynchronous quenching of damped gamma oscillations. An external oscillator (amplitude: 0.045) was injected into both E and I cells of an ISN that produced damped oscillations (<b>a</b>). When the input matched the frequency of the damped oscillation, sustained activation was generated (top). A mismatched frequency yielded damped oscillations that decayed rapidly (bottom) (<b>b</b>). Summary of the effect of input frequency on the mean activity of E cells taken over a 500 ms window (<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Steady State Analysis
3.2. Relation Between ISN and Entropy
3.3. Homeostatic Plasticity
3.4. Emergence of a Paradoxical Response
3.5. Phase Offset Induced by a Forced Oscillator
3.6. Damped Oscillations
3.7. Asynchronous Quenching
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Froemke, R.C. Plasticity of Cortical Excitatory-Inhibitory Balance. Annu. Rev. Neurosci. 2015, 38, 195–219. [Google Scholar] [CrossRef] [PubMed]
- Maimon, G.; Assad, J.A. Beyond Poisson: Increased spike-time regularity across primate parietal cortex. Neuron 2009, 62, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Buzsáki, G.; Draguhn, A. Neuronal Oscillations in Cortical Networks. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef] [PubMed]
- Shadlen, M.N.; Newsome, W.T. The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. J. Neurosci. 1998, 18, 3870–3896. [Google Scholar] [CrossRef] [PubMed]
- Skaggs, W.E.; McNaughton, B.L.; Wilson, M.A.; Barnes, C.A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 1996, 6, 149–172. [Google Scholar] [CrossRef]
- Vinck, M.; Womelsdorf, T.; Buffalo, E.A.; Desimone, R.; Fries, P. Attentional modulation of cell-class-specific gamma-band synchronization in awake monkey area v4. Neuron 2013, 80, 1077–1089. [Google Scholar] [CrossRef]
- Zemankovics, R.; Veres, J.M.; Oren, I.; Hájos, N. Feedforward inhibition underlies the propagation of cholinergically induced gamma oscillations from hippocampal CA3 to CA1. J. Neurosci. 2013, 33, 12337–12351. [Google Scholar] [CrossRef]
- Quiroga, R.Q.; Panzeri, S. Extracting information from neuronal populations: Information theory and decoding approaches. Nat. Rev. Neurosci. 2009, 10, 173–185. [Google Scholar] [CrossRef]
- Tiesinga, P.; Fellous, J.-M.; Sejnowski, T.J. Regulation of spike timing in visual cortical circuits. Nat. Rev. Neurosci. 2008, 9, 97–107. [Google Scholar] [CrossRef]
- Vinck, M.; Lima, B.; Womelsdorf, T.; Oostenveld, R.; Singer, W.; Neuenschwander, S.; Fries, P. Gamma-phase shifting in awake monkey visual cortex. J. Neurosci. 2010, 30, 1250–1257. [Google Scholar] [CrossRef]
- Sanzeni, A.; Akitake, B.; Goldbach, H.C.; Leedy, C.E.; Brunel, N.; Histed, M.H. Inhibition stabilization is a widespread property of cortical networks. eLife 2020, 9, e54875. [Google Scholar] [CrossRef] [PubMed]
- Pollina, B.; Benardete, D.; Noonburg, V.W. A Periodically Forced Wilson—Cowan System. SIAM J. Appl. Math. 2003, 63, 1585–1603. [Google Scholar] [CrossRef]
- Tsodyks, M.V.; Skaggs, W.E.; Sejnowski, T.J.; McNaughton, B.L. Paradoxical effects of external modulation of inhibitory interneurons. J. Neurosci. 1997, 17, 4382–4388. [Google Scholar] [CrossRef]
- Freeman, W.J. Relations between unit activity and evoked potentials in prepyriform cortex of cats. J. Neurophysiol. 1968, 31, 337–348. [Google Scholar] [CrossRef]
- Ledoux, E.; Brunel, N. Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs. Front. Comput. Neurosci. 2011, 5, 25. [Google Scholar] [CrossRef]
- Wilson, H.R.; Cowan, J.D. Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons. Biophys. J. 1972, 12, 1–24. [Google Scholar] [CrossRef]
- Zou, X.; Wang, D.-H. On the Phase Relationship between Excitatory and Inhibitory Neurons in Oscillation. Front. Comput. Neurosci. 2016, 10, 138. [Google Scholar] [CrossRef]
- Murphy, B.K.; Miller, K.D. Balanced amplification: A new mechanism of selective amplification of neural activity patterns. Neuron 2009, 61, 635–648. [Google Scholar] [CrossRef]
- Ozeki, H.; Finn, I.M.; Schaffer, E.S.; Miller, K.D.; Ferster, D. Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron 2009, 62, 578–592. [Google Scholar] [CrossRef]
- Jadi, M.P.; Sejnowski, T.J. Regulating Cortical Oscillations in an Inhibition-Stabilized Network. Proc. IEEE Inst. Electr. Electron. Eng. 2014, 102, 830–842. [Google Scholar] [CrossRef]
- Krishnakumaran, R.; Raees, M.; Ray, S. Shape analysis of gamma rhythm supports a superlinear inhibitory regime in an inhibition-stabilized network. PLoS Comput. Biol. 2022, 18, e1009886. [Google Scholar] [CrossRef] [PubMed]
- Veltz, R.; Sejnowski, T.J. Periodic Forcing of Inhibition-Stabilized Networks: Nonlinear Resonances and Phase-Amplitude Coupling. Neural Comput. 2015, 27, 2477–2509. [Google Scholar] [CrossRef] [PubMed]
- Ringach, D.L. Spontaneous and driven cortical activity: Implications for computation. Curr. Opin. Neurobiol. 2009, 19, 439–444. [Google Scholar] [CrossRef]
- Soldado-Magraner, S.; Seay, M.J.; Laje, R.; Buonomano, D.V. Paradoxical self-sustained dynamics emerge from orchestrated excitatory and inhibitory homeostatic plasticity rules. Proc. Natl. Acad. Sci. USA 2022, 119, e2200621119. [Google Scholar] [CrossRef]
- Turrigiano, G.G.; Leslie, K.R.; Desai, N.S.; Rutherford, L.C.; Nelson, S.B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 1998, 391, 892–896. [Google Scholar] [CrossRef]
- Srinivasan, R.; Thorpe, S.; Nunez, P.L. Top-Down Influences on Local Networks: Basic Theory with Experimental Implications. Front. Comput. Neurosci. 2013, 7, 29. [Google Scholar] [CrossRef]
- Krause, M.R.; Vieira, P.G.; Thivierge, J.-P.; Pack, C.C. Brain stimulation competes with ongoing oscillations for control of spike timing in the primate brain. PLoS Biol. 2022, 20, e3001650. [Google Scholar] [CrossRef]
- Destexhe, A.; Sejnowski, T.J. The Wilson–Cowan model, 36 years later. Biol. Cybern. 2009, 101, 1–2. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Yang, W.; Wu, Z.; Wang, J. Bidirectionally regulating gamma oscillations in Wilson-Cowan model by self-feedback loops: A computational study. Front. Syst. Neurosci. 2022, 16, 723237. [Google Scholar] [CrossRef]
- Ponce-Alvarez, A.; Deco, G. The Hopf whole-brain model and its linear approximation. Sci. Rep. 2024, 14, 2615. [Google Scholar] [CrossRef]
- Cessac, B. Linear response in neuronal networks: From neurons dynamics to collective response. Chaos 2019, 29, 103105. [Google Scholar] [CrossRef] [PubMed]
- Maheswaranathan, N.; Williams, A.H.; Golub, M.D.; Ganguli, S.; Sussillo, D. Universality and individuality in neural dynamics across large populations of recurrent networks. Adv. Neural Inf. Process. Syst. 2019, 2019, 15629–15641. [Google Scholar] [PubMed]
- Sussillo, D.; Barak, O. Opening the black box: Low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Comput. 2013, 25, 626–649. [Google Scholar] [CrossRef] [PubMed]
- Rubin, D.B.; Van Hooser, S.D.; Miller, K.D. The stabilized supralinear network: A unifying circuit motif underlying multi-input integration in sensory cortex. Neuron 2015, 85, 402–417. [Google Scholar] [CrossRef]
- Priebe, N.J.; Ferster, D. Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 2008, 57, 482–497. [Google Scholar] [CrossRef]
- Thivierge, J.-P.; Giraud, E.; Lynn, M.; Théberge, A. Charbonneau Key role of neuronal diversity in structured reservoir computing. Chaos 2022, 32, 113130. [Google Scholar] [CrossRef]
- Berberich, S.; Pohle, J.; Pollard, M.; Barroso-Flores, J.; Köhr, G. Interplay between global and pathway-specific synaptic plasticity in CA1 pyramidal cells. Sci. Rep. 2017, 7, 17040. [Google Scholar] [CrossRef]
- Schacher, S.; Wu, F.; Sun, Z.-Y. Pathway-Specific Synaptic Plasticity: Activity-Dependent Enhancement and Suppression of Long-Term Heterosynaptic Facilitation at Converging Inputs on a Single Target. J. Neurosci. 1997, 17, 597–606. [Google Scholar] [CrossRef]
- Ma, Z.; Turrigiano, G.G.; Wessel, R.; Hengen, K.B. Cortical circuit dynamics are homeostatically tuned to criticality in vivo. Neuron 2019, 104, 655–664.e4. [Google Scholar] [CrossRef]
- Hennequin, G.; Vogels, T.P.; Gerstner, W. Optimal control of transient dynamics in balanced networks supports generation of complex movements. Neuron 2014, 82, 1394–1406. [Google Scholar] [CrossRef]
- Litwin-Kumar, A.; Rosenbaum, R.; Doiron, B. Inhibitory stabilization and visual coding in cortical circuits with multiple interneuron subtypes. J. Neurophysiol. 2016, 115, 1399–1409. [Google Scholar] [CrossRef] [PubMed]
- Adesnik, H. Synaptic Mechanisms of Feature Coding in the Visual Cortex of Awake Mice. Neuron 2017, 95, 1147–1159.e4. [Google Scholar] [CrossRef] [PubMed]
- Adesnik, H.; Bruns, W.; Taniguchi, H.; Huang, Z.J.; Scanziani, M. A neural circuit for spatial summation in visual cortex. Nature 2012, 490, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.K.; Asinof, S.K.; Isaacson, J.S. Network-Level Control of Frequency Tuning in Auditory Cortex. Neuron 2017, 95, 412–423.e4. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Chen, S.; Guo, Z.V.; Chen, H.; Huo, Y.; Inagaki, H.K.; Chen, G.; Davis, C.; Hansel, D.; Guo, C.; et al. Spatiotemporal constraints on optogenetic inactivation in cortical circuits. Elife 2019, 8, e48622. [Google Scholar] [CrossRef] [PubMed]
- Sadeh, S.; Clopath, C. Inhibitory stabilization and cortical computation. Nat. Rev. Neurosci. 2021, 22, 21–37. [Google Scholar] [CrossRef]
- Dewan, E. Harmonic entrainment of van der Pol oscillations: Phaselocking and asynchronous quenching. IEEE Trans. Autom. Control. 1972, 17, 655–663. [Google Scholar] [CrossRef]
- Fröhlich, F. Endogenous and exogenous electric fields as modifiers of brain activity: Rational design of noninvasive brain stimulation with transcranial alternating current stimulation. Dialogues Clin. Neurosci. 2014, 16, 93–102. [Google Scholar] [CrossRef]
- Kurmann, R.; Gast, H.; Schindler, K.; Fröhlich, F. Rational design of transcranial alternating current stimulation: Identification, engagement, and validation of network oscillations as treatment targets. Clin. Transl. Neurosci. 2018, 2, 2514183X18793515. [Google Scholar] [CrossRef]
- Vogeti, S.; Boetzel, C.; Herrmann, C.S. Entrainment and spike-timing dependent plasticity—A review of proposed mechanisms of transcranial alternating current stimulation Frontiers in Systems. Neuroscience 2022, 16, 827353. [Google Scholar]
- Magee, J.C.; Grienberger, C. Synaptic Plasticity Forms and Functions. Annu. Rev. Neurosci. 2020, 43, 95–117. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.; Alekseichuk, I.; Krieg, J.; Doyle, A.; Yu, Y.; Vitek, J.; Johnson, M.; Opitz, A. Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates. Sci. Adv. 2020, 6, eaaz2747. [Google Scholar] [CrossRef]
- Krause, M.R.; Vieira, P.G.; Csorba, B.A.; Pilly, P.K.; Pack, C.C. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc. Natl. Acad. Sci. USA 2019, 116, 5747–5755. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Yotsumoto, Y. The amount of time dilation for visual flickers corresponds to the amount of neural entrainments measured by EEG. Front. Comput. Neurosci. 2018, 12, 30. [Google Scholar] [CrossRef]
- Sugiyama, S.; Taniguchi, T.; Kinukawa, T.; Takeuchi, N.; Ohi, K.; Shioiri, T.; Nishihara, M.; Inui, K. Suppression of low-frequency gamma oscillations by activation of 40-Hz oscillation. Cereb. Cortex 2022, 32, 2785–2796. [Google Scholar] [CrossRef]
- Wälti, M.J.; Bächinger, M.; Ruddy, K.L.; Wenderoth, N. Steady state responses in the somatosensory system interact with endogenous beta activity. bioRxiv 2019. [Google Scholar] [CrossRef]
- Krause, M.R.; Vieira, P.G.; Pack, C.C. Transcranial electrical stimulation: How can a simple conductor orchestrate complex brain activity? PLoS Biol. 2023, 21, e3001973. [Google Scholar] [CrossRef]
- Wen, W.; Turrigiano, G.G. Developmental Regulation of Homeostatic Plasticity in Mouse Primary Visual Cortex. J Neurosci. 2021, 41, 9891–9905. [Google Scholar] [CrossRef]
- Galanis, C.; Vlachos, A. Hebbian and Homeostatic Synaptic Plasticity-Do Alterations of One Reflect Enhancement of the Other? Front. Cell Neurosci. 2020, 14, 50. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godin, C.; Krause, M.R.; Vieira, P.G.; Pack, C.C.; Thivierge, J.-P. Control of Inhibition-Stabilized Oscillations in Wilson-Cowan Networks with Homeostatic Plasticity. Entropy 2025, 27, 215. https://doi.org/10.3390/e27020215
Godin C, Krause MR, Vieira PG, Pack CC, Thivierge J-P. Control of Inhibition-Stabilized Oscillations in Wilson-Cowan Networks with Homeostatic Plasticity. Entropy. 2025; 27(2):215. https://doi.org/10.3390/e27020215
Chicago/Turabian StyleGodin, Camille, Matthew R. Krause, Pedro G. Vieira, Christopher C. Pack, and Jean-Philippe Thivierge. 2025. "Control of Inhibition-Stabilized Oscillations in Wilson-Cowan Networks with Homeostatic Plasticity" Entropy 27, no. 2: 215. https://doi.org/10.3390/e27020215
APA StyleGodin, C., Krause, M. R., Vieira, P. G., Pack, C. C., & Thivierge, J.-P. (2025). Control of Inhibition-Stabilized Oscillations in Wilson-Cowan Networks with Homeostatic Plasticity. Entropy, 27(2), 215. https://doi.org/10.3390/e27020215