Intelligent-Reflecting-Surface-Assisted Single-Input Single-Output Secure Transmission: A Joint Multiplicative Perturbation and Constructive Reflection Perspective
<p>An IRS-aided SISO secure transmission system.</p> "> Figure 2
<p>An illustration of received signal observations at BS and Eve with the RPA-based JPR secure transmissions.</p> "> Figure 3
<p>Comparison of simulated and theoretical results for the achievable ESR with the ERPA-based JPR scheme.</p> "> Figure 4
<p>Comparison of simulatied and theoretical results for the achievable ESR with the GRPA-based JPR scheme.</p> "> Figure 5
<p>Comparison of simulated ESR results with different secure transmission schemes.</p> "> Figure 6
<p>Comparison of simulated and theoretical SOP results with different JPR schemes.</p> "> Figure 7
<p>Comparison of simulated SOP results with different secure transmission schemes.</p> ">
Abstract
:1. Introduction
- We propose an IRS-assisted SISO secure transmission system, where the transmitter sends a scrambling signal alongside the information signal to comprehensively guarantee the system’s secrecy. To thoroughly evaluate the system’s capability of anti-wiretapping, we consider two eavesdropping scenarios, where a malicious passive eavesdropper possesses direct links with and without the IRS, respectively.
- We introduce a joint transmitter perturbation and IRS reflection (JPR) approach so as to enhance the system’s secrecy. The JPR approach is framed based on the reflection perturbation alignment (RPA) strategy, so as to eliminate phase distortions at the legitimate receiver, while simultaneously constraining the eavesdropper’s ability to receive the confidential signals. Additionally, we also present IRS element/group-wise RPA (ERPA/GRPA)-based JPRs to attain different extents of trade-offs between the system implementation complexity and achievable performance.
- The secrecy performance results of the IRS-assisted SISO secure transmission system are analyzed and evaluated. Specifically, we derive the closed-form or semi-closed-form ESR and SOP under different JPR strategies and distinct eavesdropping scenarios. Additionally, the simulated and numerical results of ESR and SOP are characterized and investigated so as to substantiate the theoretical derivations and reveal the technical superiorities of our proposed secure transmission.
2. System Model
3. RPA-Based JPR Secure Transmission
3.1. ERPA Based JPR Design
3.2. GRPA Based JPR Design
4. Secrecy Performance Evaluation
4.1. ESR Derivation
4.1.1. ERPA-Based Derivation
4.1.2. GRPA-Based Derivation
4.2. SOP Derivation
4.2.1. ERPA-Based Derivation
4.2.2. GRPA-Based Derivation
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Xia, X.Y.; Yu, C.; Wu, F.; Jiang, Z.H.; Zheng, S.; Tang, S.Y.; Yao, Y.; Hong, W. Millimeter-Wave Beam-Tilted Phased Array Antenna for 5G-Enabled IoT Devices. IEEE Internet Things J. 2024, 11, 1496–1508. [Google Scholar] [CrossRef]
- Asheralieva, A.; Niyato, D. Optimizing Age of Information and Security of the Next-Generation Internet of Everything Systems. IEEE Internet Things J. 2022, 9, 20331–20351. [Google Scholar] [CrossRef]
- Bazzi, A.; Chafii, M. Secure Full Duplex Integrated Sensing and Communications. IEEE Trans. Inf. Forensics Secur. 2024, 19, 2082–2097. [Google Scholar] [CrossRef]
- Khalid, W.; Rehman, M.A.U.; Van Chien, T.; Kaleem, Z.; Lee, H.; Yu, H. Reconfigurable Intelligent Surface for Physical Layer Security in 6G-IoT: Designs, Issues, and Advances. IEEE Internet Things J. 2024, 11, 3599–3613. [Google Scholar] [CrossRef]
- Sadig, T.; Maleki, M.; Tran, N.H.; Reza Bahrami, H. Encryption-Aided Physical Layer Security via Cooperative Jamming: Beyond Secrecy Capacity with Noisy Ciphertext. In Proceedings of the 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, UK, 26–29 March 2023; pp. 1–6. [Google Scholar]
- Wang, J.J.; Han, G.T.; Li, S.; Zhou, Z. A Lightweight Combined Physical Layer Encryption and Authentication Scheme for Industrial Internet of Things. IEEE Access 2024, 12, 6961–6970. [Google Scholar] [CrossRef]
- Nguyen, T.; Chien, T.; Tran, D.; Phan, V.; Voznak, M.; Chatzinotas, S.; Ding, Z.; Poor, H. Security-Reliability Trade-Offs for Satellite-Terrestrial Relay Networks with a Friendly Jammer and Imperfect CSI. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 7004–7019. [Google Scholar] [CrossRef]
- Arzykulov, S.; Celik, A.; Nauryzbayev, G.; Eltawil, A.M. Artificial Noise and RIS-Aided Physical Layer Security: Optimal RIS Partitioning and Power Control. IEEE Wireless Commun. Lett. 2023, 12, 992–996. [Google Scholar] [CrossRef]
- Han, H.; Cao, Y.; Deng, N.; Xing, C.; Zhao, N.; Li, Y.; Wang, X. Secure Transmission for STAR-RIS Aided NOMA Against Internal Eavesdropping. IEEE Trans. Veh. Technol. 2023, 72, 15068–15073. [Google Scholar] [CrossRef]
- Zhao, S.; Xie, B.; Liu, Z.; An, J. Reconfigurable Intelligent Surface-Assisted Radar Deception Electronic Counter-Countermeasures. Remote Sens. 2023, 15, 5149. [Google Scholar] [CrossRef]
- Wang, H.M.; Bai, J.; Dong, L. Intelligent Reflecting Surfaces Assisted Secure Transmission without Eavesdropper’s CSI. IEEE Signal Process. Lett. 2020, 27, 1300–1304. [Google Scholar] [CrossRef]
- Khoshafa, M.; Ngatched, T.; Ahmed, M. Reconfigurable Intelligent Surfaces-Aided Physical Layer Security Enhancement in D2D Underlay Communications. IEEE Commun. Lett. 2021, 25, 1443–1447. [Google Scholar] [CrossRef]
- Cao, K.; Ding, H.; Li, W.; Lv, L.; Gao, M.; Gong, F.; Wang, B. On the Ergodic Secrecy Capacity of Intelligent Reflecting Surface Aided Wireless Powered Communication Systems. IEEE Wirel. Commun. Lett. 2022, 11, 2275–2279. [Google Scholar] [CrossRef]
- Zhi, K.; Pan, C.; Ren, H.; Chai, K.K.; Elkashlan, M. Active RIS Versus Passive RIS: Which is Superior with the Same Power Budget? IEEE Commun. Lett. A Publ. IEEE Commun. Soc. 2022, 26, 1150–1154. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H.; Liu, X.; Li, L.; Li, H. IRS Empowered MEC System with Computation Offloading, Reflecting Design, and Beamforming Optimization. IEEE Trans. Commun. 2024, 72, 3051–3063. [Google Scholar] [CrossRef]
- Chen, J.; Wu, K.; Niu, J.; Li, Y. Joint Active and Passive Beamforming in RIS-Assisted Secure ISAC Systems. Sensors 2024, 24, 289. [Google Scholar] [CrossRef]
- Liu, J.; Yu, J.; Zhang, R.; Wang, S.; Yang, K.; An, J. Intelligent Reflecting Surface-Aided Covert Ambient Backscatter Communication. IEEE Trans. Commun. 2024, 72, 3558–3571. [Google Scholar] [CrossRef]
- Abumarshoud, H.; Chen, C.; Tavakkolnia, I.; Haas, H.; Imran, M.A. Intelligent Reflecting Surfaces for Enhanced Physical Layer Security in NOMA VLC Systems. In Proceedings of the IEEE International Conference on Communications (ICC), Rome, Italy, 28 May–1 June 2023; pp. 3284–3289. [Google Scholar]
- Benaya, A.M.; Ismail, M.H.; Ibrahim, A.S.; Salem, A.A. Physical Layer Security Enhancement via Intelligent Omni-Surfaces and UAV-Friendly Jamming. IEEE Access 2023, 11, 2531–2544. [Google Scholar] [CrossRef]
- Cheng, T.; Wang, B.; Wang, Z.; Cao, K.; Dong, R.; Weng, J. Intelligent Reflecting Surface Assisted Secure Transmission in UAV-MIMO Communication Systems. Entropy 2022, 24, 1605. [Google Scholar] [CrossRef]
- Yang, L.; Yang, J.; Xie, W.; Hasna, M.O.; Tsiftsis, T.; Renzo, M.D. Secrecy Performance Analysis of RIS-Aided Wireless Communication Systems. IEEE Trans. Veh. Technol. 2020, 69, 12296–12300. [Google Scholar] [CrossRef]
- Omid, Y.; Deng, Y.; Nallanathan, A. Deep Reinforcement Learning-Based Secure Standalone Intelligent Reflecting Surface Operation. In Proceedings of the IEEE Global Communications Conference(GLOBECOM), Rio de Janeiro, Brazil, 4–8 December 2022; pp. 5329–5334. [Google Scholar]
- Kaveh, M.; Yan, Z.; Jäntti, R. Secrecy Performance Analysis of RIS-Aided Smart Grid Communications. IEEE Trans. Ind. Inform. 2024, 20, 5415–5427. [Google Scholar] [CrossRef]
- Zhang, T.; Wen, H.; Jiang, Y.; Tang, J. Deep-Reinforcement-Learning-Based IRS for Cooperative Jamming Networks Under Edge Computing. IEEE Internet Things J. 2023, 10, 8996–9006. [Google Scholar] [CrossRef]
- Xu, S.; Liu, J.; Cao, Y. Intelligent Reflecting Surface Empowered Physical-Layer Security: Signal Cancellation or Jamming? IEEE Internet Things J. 2022, 9, 1265–1275. [Google Scholar] [CrossRef]
- Lin, S.; Zou, Y.; Li, B.; Wu, T. Security-Reliability Trade-Off Analysis of RIS-Aided Multiuser Communications. IEEE Trans. Veh. Technol. 2023, 72, 6225–6237. [Google Scholar] [CrossRef]
- Wei, L.; Wang, K.; Pan, C.; Elkashlan, M. Secrecy Performance Analysis of RIS-Aided Communication System with Randomly Flying Eavesdroppers. IEEE Wirel. Commun. Lett. 2022, 11, 2240–2244. [Google Scholar] [CrossRef]
- Shi, W.; Xu, J.; Xu, W.; Yuen, C.; Swindlehurst, A.L.; Zhao, C. On Secrecy Performance of RIS-Assisted MISO Systems over Rician Channels with Spatially Random Eavesdroppers. IEEE Trans. Wirel. Commun. 2024, 23, 8357–8371. [Google Scholar] [CrossRef]
- Xu, S.; Du, Y.; Zhang, J. Artificial Noise Masked Microwave QR Code for Secure Vehicle Communications. IEEE Trans. Veh. Technol. 2023, 73, 7379–7383. [Google Scholar] [CrossRef]
- Hong, S.; Pan, C.; Ren, H.; Wang, K.; Nallanathan, A. Artificial-Noise-Aided Secure MIMO Wireless Communications via Intelligent Reflecting Surface. IEEE Trans. Commun. 2020, 68, 7851–7866. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Du, H.Y.; Sun, Q.; Ai, B.; Ng, D.W.K. Physical layer security enhancement with reconfigurable intelligent surface-aided networks. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3480–3495. [Google Scholar] [CrossRef]
- Zhang, X.; Song, S. Secrecy Analysis for IRS-Aided Wiretap MIMO Communications: Fundamental Limits and System Design. IEEE Trans. Inf. Theory 2024, 70, 4140–4159. [Google Scholar] [CrossRef]
- Liao, J.C.; Chen, W.C.; Chung, C.D. Performance Analysis of SIMO–OFDM Systems With Pilot-Aided Channel Estimation. IEEE Syst. J. 2023, 17, 2366–2377. [Google Scholar] [CrossRef]
- Ma, J.; Liu, C.; Zheng, T.X.; Liu, C.; Lu, G. Augmented Pattern Index Modulation Empowered by RIS. In Proceedings of the 2022 IEEE International Conference on Communications (ICC), Seoul, Republic of Korea, 16–20 May 2022; pp. 2858–2863. [Google Scholar]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.S.; Yuen, C.; de Rosny, J.; Tretyakov, S. Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead. IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Lu, J.; Wang, J.; Zhang, Q.; Wang, D. Secrecy Rate Analysis for RIS-Aided Multi-User MISO System over Rician Fading Channel. J. Commun. Inf. Netw. 2023, 8, 48–56. [Google Scholar] [CrossRef]
- Gradshteyn, I.; Ryzhik, I. Table of Integrals, Series and Products, 7th ed.; Academic Press: San Diego, CA, USA, 2007. [Google Scholar]
- Shi, J.; Dong, C.; Yang, L.L. Performance comparison of cooperative relay links with different relay processing strategies: Nakagami/Gamma approximation approaches. EURASIP J. Wirel. Commun. Netw. 2014, 2014, 53. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Zeng, A.; Yu, F.; Shi, Z.; Liu, M.; Liu, B. Intelligent-Reflecting-Surface-Assisted Single-Input Single-Output Secure Transmission: A Joint Multiplicative Perturbation and Constructive Reflection Perspective. Entropy 2024, 26, 849. https://doi.org/10.3390/e26100849
Liu C, Zeng A, Yu F, Shi Z, Liu M, Liu B. Intelligent-Reflecting-Surface-Assisted Single-Input Single-Output Secure Transmission: A Joint Multiplicative Perturbation and Constructive Reflection Perspective. Entropy. 2024; 26(10):849. https://doi.org/10.3390/e26100849
Chicago/Turabian StyleLiu, Chaowen, Anling Zeng, Fei Yu, Zhengmin Shi, Mingyang Liu, and Boyang Liu. 2024. "Intelligent-Reflecting-Surface-Assisted Single-Input Single-Output Secure Transmission: A Joint Multiplicative Perturbation and Constructive Reflection Perspective" Entropy 26, no. 10: 849. https://doi.org/10.3390/e26100849