Phase Space Spin-Entropy
<p>Spin-entropy for <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> eigenstates along the <span class="html-italic">z</span>-direction. It is invariant by transforming <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>→</mo> <mo>−</mo> <mi>m</mi> </mrow> </semantics></math> and it decreases as <span class="html-italic">m</span> increases for <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>≥</mo> <mn>0</mn> </mrow> </semantics></math> (see Lemma 3).</p> "> Figure 2
<p>Spin-entropy (<a href="#FD33-entropy-26-00372" class="html-disp-formula">33</a>) vs. <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mo>∈</mo> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mi>π</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for the <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> state (<a href="#FD31-entropy-26-00372" class="html-disp-formula">31</a>), a superposition of <math display="inline"><semantics> <mrow> <msub> <mi>ψ</mi> <mrow> <mi>s</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>θ</mi> <mo>,</mo> <mi>ϕ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>ψ</mi> <mrow> <mi>s</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>θ</mi> <mo>,</mo> <mi>ϕ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. The extremes occur for <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>,</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> <mo>,</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </mrow> </semantics></math>. At its maximum <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>,</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </mrow> </semantics></math>, the superposition of states (<a href="#FD31-entropy-26-00372" class="html-disp-formula">31</a>) is a canonical transformation of a state <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, either to the <span class="html-italic">x</span>-eigenstate <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>m</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> </semantics></math>) or to the <span class="html-italic">y</span>-eigenstate <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>m</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </mrow> </semantics></math>).</p> "> Figure 3
<p>Plots of spin-entropy of entanglement (<a href="#FD41-entropy-26-00372" class="html-disp-formula">41</a>) vs. <math display="inline"><semantics> <msup> <mi>θ</mi> <mi mathvariant="normal">e</mi> </msup> </semantics></math>, a parameter that controls the amount of the entanglement. When <math display="inline"><semantics> <mrow> <msup> <mi>θ</mi> <mi mathvariant="normal">e</mi> </msup> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </mrow> </semantics></math>, there is no entanglement (product state), and when <math display="inline"><semantics> <mrow> <msup> <mi>θ</mi> <mi mathvariant="normal">e</mi> </msup> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>,</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </mrow> </semantics></math>, there is maximum entanglement. In all graphs, the spin-entropy increases as the amount of the entanglement increases. (<b>a</b>). The spin-entropy of the entanglement <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </semantics></math>, for any given <math display="inline"><semantics> <msup> <mi>θ</mi> <mi mathvariant="normal">e</mi> </msup> </semantics></math>, is larger than the spin-entropy of the entanglements shown in b. and c., for the same <math display="inline"><semantics> <msup> <mi>θ</mi> <mi mathvariant="normal">e</mi> </msup> </semantics></math>. (<b>b</b>). The entanglement entropy shown for <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> is the same as in the case <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>. This can be inferred from the mapping, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>→</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> being described by the mapping <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>θ</mi> <mo>,</mo> <msup> <mi>θ</mi> <mo>′</mo> </msup> <mo>)</mo> </mrow> <mo>→</mo> <mrow> <mo>(</mo> <mi>π</mi> <mo>−</mo> <mi>θ</mi> <mo>,</mo> <mi>π</mi> <mo>−</mo> <msup> <mi>θ</mi> <mo>′</mo> </msup> <mo>)</mo> </mrow> </mrow> </semantics></math> which leads to the same probabilities (<a href="#FD40-entropy-26-00372" class="html-disp-formula">40</a>) and, thus, to the same spin-entropy (<a href="#FD41-entropy-26-00372" class="html-disp-formula">41</a>). (<b>c</b>). The minimum entanglement value is less than in b., after all in these cases the spin-entropy is simply the sum of the spin-entropy of both states. The maximum entanglement value is more than in b. We wonder if it may be related to the fact that the superposition of these two states is a canonical transformation of the higher entropy state <math display="inline"><semantics> <msub> <mi>ψ</mi> <mrow> <mi>s</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> </semantics></math>; see <a href="#entropy-26-00372-f002" class="html-fig">Figure 2</a>.</p> ">
Abstract
:1. Introduction
1.1. Previous Work
1.2. Paper Organization
2. Some Geometric Quantization Concepts
2.1. Complex Plane and the Sphere
2.2. Symplectic Structure for the Sphere and Canonical Transformations
2.3. Spin Operator and Eigenfunctions
3. Spin-Entropy in Phase Space
3.1. Spin One-Half
3.2. Spin One
3.3. Any Spin Value
4. Mixed States: Von Neumann Entropy vs. Spin-Entropy
5. Phase Space Entanglement Increases Entropy
6. Spin Interaction and Oscillations of the Spin-Entropy
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Geometric Quantization Summary
Appendix A.1. Symplectic Structure
Appendix A.2. From Canonical Transformations to Pre-Quantum Operators
Appendix A.3. From 3D Embedding Functions to Quantum Spin Operators
Appendix B. Logarithm Properties
References
- Souriau, J.M. Structure des Systemes Dynamiques; Dunod: Paris, France, 1970. [Google Scholar]
- Kostant, B. Quantization and unitary representations. Lect. Notes Math. 1970, 170, 87–208. [Google Scholar]
- Woodhouse, N.M.J. Geometric Quantization; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Blau, M. Symplectic Geometry and Geometric Quantization. Lecture Notes. 1992. Available online: https://ncatlab.org/nlab/files/BlauGeometricQuantization.pdf (accessed on 16 August 2023).
- Nair, V.P. Elements of geometric quantization and applications to fields and fluids. arXiv 2016, arXiv:1606.06407. [Google Scholar]
- Von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Zeh, H.D. On the interpretation of measurement in quantum theory. Found. Phys. 1970, 1, 69–76. [Google Scholar] [CrossRef]
- Horodecki, M.; Oppenheim, J.; Sen(De), A.; Sen, U. Distillation Protocols: Output Entanglement and Local Mutual Information. Phys. Rev. Lett. 2004, 93, 170503. [Google Scholar] [CrossRef]
- Deutsch, D. Uncertainty in Quantum Measurements. Phys. Rev. Lett. 1983, 50, 631–633. [Google Scholar] [CrossRef]
- Deutsch, J.M. Quantum Statistical Mechanics in a Closed System. Phys. Rev. A 1991, 43, 2046. [Google Scholar] [CrossRef]
- Witten, E. A Mini-Introduction To Information Theory. arXiv 2018, arXiv:1805.11965. [Google Scholar] [CrossRef]
- Bennett, C.H.; Bernstein, H.J.; Popescu, S.; Schumacher, B. Concentrating partial entanglement by local operations. Phys. Rev. A 1996, 53, 2046–2052. [Google Scholar] [CrossRef]
- Calabrese, P.; Cardy, J. Entanglement entropy and quantum field theory. J. Stat. Mech. 2004, 2004, P06002. [Google Scholar] [CrossRef]
- Srednicki, M. Entropy and area. Phys. Rev. Lett. 1993, 71, 666–669. [Google Scholar] [CrossRef]
- Geiger, D.; Kedem, Z.M. On Quantum Entropy. Entropy 2022, 24, 1341. [Google Scholar] [CrossRef]
- Geiger, D. Quantum Knowledge in Phase Space. Entropy 2023, 25, 1227. [Google Scholar] [CrossRef]
- Gerlach, W.; Stern, O. Der experimentelle Nachweis des magnetischen Moments des Silberatoms. Z. Phys. 1922, 8, 110–111. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Wehrl, A. General properties of entropy. Rev. Mod. Phys. 1978, 50, 221. [Google Scholar] [CrossRef]
- Lieb, E.H.; Solovej, J.P. Quantum coherent operators: A generalization of coherent states. Lett. Math. Phys. 1991, 22, 145–154. [Google Scholar] [CrossRef]
- Lieb, E.H.; Solovej, J.P. Proof of an entropy conjecture for Bloch coherent spin states and its generalizations. Acta Math. 2014, 212, 379–398. [Google Scholar] [CrossRef]
- Schupp, P. On Lieb’s Conjecture for the Wehrl Entropy of Bloch Coherent States. Commun. Math. Phys. 1999, 207, 481–493. [Google Scholar] [CrossRef]
- Geiger, D.; Kedem, Z.M. Spin Entropy. Entropy 2022, 24, 1292. [Google Scholar] [CrossRef]
- Joos, E.; Zeh, H.D. The emergence of classical properties through interaction with the environment. Z. für Phys. B Condens. Matter 1985, 59, 223–243. [Google Scholar] [CrossRef]
- Raimond, J.M.; Brune, M.; Haroche, S. Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 2001, 73, 565–582. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef]
- Fermi, E. Nuclear Physics: A Course Given by Enrico Fermi at the University of Chicago; University of Chicago Press: Chicago, IL, USA, 1950. [Google Scholar]
- Dirac, P.A.M. The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. A 1927, 114, 243–265. [Google Scholar]
- Diósi, L. Progressive Decoherence and Total Environmental Disentanglement. In Irreversible Quantum Dynamics; Springer: Berlin/Heidelberg, Germany, 2003; pp. 157–163. [Google Scholar] [CrossRef]
- Srednicki, M. Chaos and Quantum Thermalization. Phys. Rev. E 1994, 50. [Google Scholar] [CrossRef] [PubMed]
- Popescu, S.; Short, A.; Winter, A. Entanglement and the foundations of statistical mechanics. Nat. Phys. 2006, 2, 754–758. [Google Scholar] [CrossRef]
- Goldstein, S.; Lebowitz, J.; Tumulka, R.; Zanghì, N. Canonical Typicality. Phys. Rev. Lett. 2006, 96. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geiger, D. Phase Space Spin-Entropy. Entropy 2024, 26, 372. https://doi.org/10.3390/e26050372
Geiger D. Phase Space Spin-Entropy. Entropy. 2024; 26(5):372. https://doi.org/10.3390/e26050372
Chicago/Turabian StyleGeiger, Davi. 2024. "Phase Space Spin-Entropy" Entropy 26, no. 5: 372. https://doi.org/10.3390/e26050372