Simulations of the Characteristics of the Entropy Mode in Dipole-Magnetic-Confined Plasmas
<p>Schematic diagram of the basic motion of capture particles in the radiation belt.</p> "> Figure 2
<p>The curves of (<b>a</b>) the mode frequency <span class="html-italic">ω</span><sub>r</sub> and (<b>b</b>) the growth rate of the mode <span class="html-italic">ω</span><sub>i</sub>, with different <span class="html-italic">η</span> = <span class="html-italic">L</span><sub>n</sub>/<span class="html-italic">L</span><sub>T</sub> at typical <span class="html-italic">k</span><sub>⊥</sub><span class="html-italic">ρ</span><sub>i</sub>.</p> "> Figure 3
<p>The curves of (<b>a</b>) the mode frequency <span class="html-italic">ω</span><sub>r</sub> and (<b>b</b>) the growth rate of the mode <span class="html-italic">ω</span><sub>i</sub>, with different <span class="html-italic">η</span> = <span class="html-italic">L</span><sub>n</sub>/<span class="html-italic">L</span><sub>T</sub> at the typical value of <span class="html-italic">L</span><sub>p</sub><sup>−1</sup>, where <span class="html-italic">k</span><sub>⊥</sub><span class="html-italic">ρ</span><sub>i</sub> = 0.1.</p> "> Figure 4
<p>The curves of (<b>a</b>) the mode frequency <span class="html-italic">ω</span><sub>r</sub> and (<b>b</b>) the growth rate of the mode <span class="html-italic">ω</span><sub>i</sub>, with different 1/<span class="html-italic">L</span><sub>n</sub> = −1/<span class="html-italic">n</span>(d<span class="html-italic">n</span>/d<span class="html-italic">Ψ</span>) at the typical value of <span class="html-italic">L</span><sub>T</sub><sup>−1</sup>, where <span class="html-italic">k</span><sub>⊥</sub><span class="html-italic">ρ</span><sub>i</sub> = 0.5, 1/<span class="html-italic">L</span><sub>T</sub> = −1/<span class="html-italic">T</span>(d<span class="html-italic">T</span>/d<span class="html-italic">Ψ</span>), and <span class="html-italic">η</span> = 0.2.</p> "> Figure 5
<p>The dispersion relations between <span class="html-italic">k</span><sub>⊥</sub><span class="html-italic">ρ</span><sub>i</sub> and (<b>a</b>) the mode frequency <span class="html-italic">ω</span><sub>r</sub>, and (<b>b</b>) the growth rate of the mode <span class="html-italic">ω</span><sub>i</sub>, for different values of <span class="html-italic">L</span><sub>p</sub><sup>−1</sup>, where <span class="html-italic">k</span><sub>⊥</sub><span class="html-italic">ρ</span><sub>i</sub> = 0.5 and <span class="html-italic">η</span> = 0.2.</p> ">
Abstract
:1. Introduction
2. Model Description
3. Simulation Results and Discussion
4. Conclusions
- (1)
- It is found that the entropy mode can be generated in dipole-magnetic-confined plasmas, and there are two typical stages of the entropy mode, with another transitional stage at different values of η. The main instability changes from the ion diamagnetic drift to the electronic diamagnetic drift as η becomes larger and η~1 as k⊥ρi increases.
- (2)
- For the case with small values of k⊥ρi and η, the characteristics of the entropy mode are shown when the value of 1/LP is small. However, the characteristics of the interchange-like modes gradually emerge when the driving effect of the plasma pressure becomes stronger (the value of 1/LP becomes larger).
- (3)
- There is a peak value for the entropy mode growth rate around k⊥ρi~1.0, and more complicated modes are induced so that the dispersion relation has been changed when the driving force of the plasma pressure gradient effect is obvious.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Boxer, A.C.; Garnier, D.T.; Ellsworth, J.L.; Kesner, J.; Mauel, M.E. Density profiles in the levitated dipole experiment. J. Fusion Energy 2008, 27, 11–15. [Google Scholar] [CrossRef]
- Baitha, A.R.; Kumar, A.; Bhattacharjee, S. A table top experiment to investigate production and properties of a plasma confined by a dipole magnet. Rev. Sci. Instrum. 2018, 89, 023503. [Google Scholar] [CrossRef] [PubMed]
- Levitt, B.; Maslovsky, D.; Mauel, M.E. Observation of Centrifugally Driven Interchange Instabilities in a Plasma Confined by a Magnetic Dipole. Phys. Rev. Lett. 2005, 94, 175002. [Google Scholar] [CrossRef] [PubMed]
- Boxer, A.C.; Bergmann, R.; Ellsworth, J.L.; Garnier, D.T.; Kesner, J.; Mauel, M.E.; Woskov, P. Turbulent inward pinch of plasma confined by a levitated dipole magnet. Nat. Phys. 2010, 6, 207–212. [Google Scholar] [CrossRef]
- Garnier, D.T.; Hansen, A.; Mauel, M.E.; Ortiz, E.; Boxer, A.C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A. Production and study of high-beta plasma confined by a superconducting dipole magnet. Phys. Plasmas 2006, 13, 056111. [Google Scholar] [CrossRef]
- Mauel, M.; Warren, H.; Hasegawa, A. An experiment to measure collisionless radial transport of energetic electrons confined by a dipole magnetic field. IEEE Trans. Plasma Sci. 1992, 20, 626–630. [Google Scholar] [CrossRef]
- Yoshida, Z.; Saitosh, H.; Yano, Y.; Mikami, H.; Kasaoka, N.; Sakamoto, W.; Morikawa, J.; Furukawa, M.; Mahajan, S.M. Self-organized confinement by magnetic dipole: Recent results from RT-1 and theoretical modeling. Plasma Phys. Control. Fusion 2013, 55, 014018. [Google Scholar] [CrossRef]
- Zhukovsky, A.; Michael, P.; Schultz, J.; Smith, B.; Minervini, J.; Kesner, J.; Radovinsky, A.; Garnier, D.; Mauel, M. First integrated test of the superconducting magnet systems for the Levitated Dipole Experiment (LDX). Fusion Eng. Des. 2005, 75–79, 29–32. [Google Scholar] [CrossRef]
- Saitoh, H.; Yoshida, Z.; Morikawa, J.; Furukawa, M.; Yano, Y.; Kawai, Y.; Kobayashi, M.; Vogel, G.; Mikami, H. Formation of high-β plasma and stable confinement of toroidal electron plasma in Ring Trap 1. Phys. Plasmas 2011, 18, 056102. [Google Scholar] [CrossRef]
- Barnes, C.; Jarboe, T.; Henins, I.; Sherwood, A.; Knox, S.; Gribble, R.; Hoida, H.; Klingner, P.; Lilliequist, C.; Linford, R.; et al. Spheromak formation and operation with background filling gas and a solid flux conserver in CTX. Nucl. Fusion 1984, 24, 267–281. [Google Scholar] [CrossRef]
- Yoshida, Z.; Ogawa, Y.; Morikawa, J.; Watanabe, S.; Yano, Y.; Mizumaki, S.; Tosaka, T.; Ohtani, Y.; Hayakawa, A.; Shibui, M. First Plasma in the RT-1 Device. Plasma Fusion Res. 2006, 1, 8. [Google Scholar] [CrossRef]
- Garnier, D.T.; Kesner, J.; Mauel, M.E. Magnetohydrodynamic stability in a levitated dipole. Phys. Plasmas 1999, 6, 3431–3434. [Google Scholar] [CrossRef]
- Simakov, A.N.; Catto, P.J.; Krasheninnikov, S.I.; Ramos, J.J. Ballooning stability of a point dipole equilibrium. Phys. Plasmas 2000, 7, 2526–2529. [Google Scholar] [CrossRef]
- Kesner, J. Interchange modes in a collisional plasma. Phys. Plasmas 2000, 7, 3837–3840. [Google Scholar] [CrossRef]
- Kesner, J.; Hastie, R.J. Electrostatic drift modes in a closed field line configuration. Phys. Plasmas 2002, 9, 395–400. [Google Scholar] [CrossRef]
- Kadomtsev, B.B. Convective pinch instability. Sov. Phys. JETP 1960, 10, 780–783. [Google Scholar]
- Levitt, B.; Maslovsky, D.; Mauel, M.E. Measurement of the global structure of interchange modes driven by energetic electrons trapped in a magnetic dipole. Phys. Plasmas 2002, 9, 2507–2517. [Google Scholar] [CrossRef]
- Ou, W.; Wang, L.; Li, B.; Rogers, B.N. Turbulent pinch in whole-plasma simulations of a dipole-confined plasma. Phys. Rev. E 2020, 101, 021201. [Google Scholar] [CrossRef]
- Simakov, A.N.; Catto, P.J.; Hastie, R.J. Kinetic stability of electrostatic plasma modes in a dipolar magnetic field. Phys. Plasmas 2001, 8, 4414–4426. [Google Scholar] [CrossRef]
- Kobayashi, S.; Rogers, B.N.; Dorland, W. Gyrokinetic Simulations of Turbulent Transport in a Ring Dipole Plasma. Phys. Rev. Lett. 2009, 103, 055003. [Google Scholar] [CrossRef]
- Kobayashi, S.; Rogers, B.N.; Dorland, W. Particle Pinch in Gyrokinetic Simulations of Closed Field-Line Systems. Phys. Rev. Lett. 2010, 105, 235004. [Google Scholar] [CrossRef] [PubMed]
- Garnier, D.T.; Boxer, A.C.; Ellsworth, J.L.; Hansen, A.K.; Karim, I.; Kesner, J.; Mauel, M.E.; Ortiz, E.E.; Roach, A. Stabilization of a low-frequency instability in a dipole plasma. J. Plasma Phys. 2008, 74, 733–740. [Google Scholar] [CrossRef]
- Qian, T.M.; Mauel, M.E. Observation of weakly damped modes using high resolution measurement of turbulence in a dipole confined plasma. Phys. Plasmas 2020, 27, 014501. [Google Scholar] [CrossRef]
- Qian, L.; Wang, Z.; Wang, X. Gyrokinetic investigations on entropy modes in dipole magnetic field confined plasmas with an anisotropic temperature. Phys. Plasmas 2019, 26, 032113. [Google Scholar] [CrossRef]
- Qian, L.; Wang, Z.B.; Li, J.R.; Wang, X. Entropy modes in multi-component plasmas confined by a dipole field. Phys. Plasmas 2020, 27, 042104. [Google Scholar] [CrossRef]
- Xie, H.-S.; Zhang, Y.; Huang, Z.-C.; Ou, W.-K.; Li, B. Local gyrokinetic study of electrostatic microinstabilities in dipole plasmas. Phys. Plasmas 2017, 24, 122115. [Google Scholar] [CrossRef]
- Garnier, D.T.; Mauel, M.E.; Roberts, T.M.; Kesner, J.; Woskov, P.P. Turbulent fluctuations during pellet injection into a dipole confined plasma torus. Phys. Plasmas 2017, 24, 012506. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, L.; Wang, Z.; Chen, J.; Mao, A.; Yv, Y.; Nie, Q.; Wang, X. Simulations of the Characteristics of the Entropy Mode in Dipole-Magnetic-Confined Plasmas. Entropy 2023, 25, 1481. https://doi.org/10.3390/e25111481
Qian L, Wang Z, Chen J, Mao A, Yv Y, Nie Q, Wang X. Simulations of the Characteristics of the Entropy Mode in Dipole-Magnetic-Confined Plasmas. Entropy. 2023; 25(11):1481. https://doi.org/10.3390/e25111481
Chicago/Turabian StyleQian, Liang, Zhibin Wang, Jian Chen, Aohua Mao, Yi Yv, Qiuyue Nie, and Xiaogang Wang. 2023. "Simulations of the Characteristics of the Entropy Mode in Dipole-Magnetic-Confined Plasmas" Entropy 25, no. 11: 1481. https://doi.org/10.3390/e25111481
APA StyleQian, L., Wang, Z., Chen, J., Mao, A., Yv, Y., Nie, Q., & Wang, X. (2023). Simulations of the Characteristics of the Entropy Mode in Dipole-Magnetic-Confined Plasmas. Entropy, 25(11), 1481. https://doi.org/10.3390/e25111481