Multi-Image Encryption Algorithm Based on Cascaded Modulation Chaotic System and Block-Scrambling-Diffusion
<p>Chaotic map bifurcation graph.</p> "> Figure 2
<p>Performance analysis of chaotic map: (<b>a</b>) Bifurcation diagram of LHCM, (<b>b</b>) LE of LHCM, (<b>c</b>) 0–1 test of LHCM, (<b>d</b>) Bifurcation diagram of HSCM, (<b>e</b>) LE of HSCM, (<b>f</b>) 0–1 test of HSCM, (<b>g</b>) Bifurcation diagram of HICM, (<b>h</b>) LE of HICM, and (<b>i</b>) 0–1 test of HICM.</p> "> Figure 3
<p>Encryption algorithm process diagram.</p> "> Figure 4
<p>Multiple images are scrambled across planes.</p> "> Figure 5
<p>Bit spiral transformation.</p> "> Figure 6
<p>V-shaped diffuse.</p> "> Figure 7
<p>Bit-group diffusion.</p> "> Figure 8
<p>Encryption and decryption results: (<b>a</b>) Boat; (<b>b</b>) Lena; (<b>c</b>) Peppers; (<b>d</b>) Ciphertext image; (<b>e</b>) Decrypt image Boat; (<b>f</b>) Decrypt image Lena; (<b>g</b>) Decrypt image Peppers.</p> "> Figure 9
<p>Key sensitivity test: (<b>a</b>) Combined image decrypted with correct key; (<b>b</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics></math> = <math display="inline"><semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics></math> + <math display="inline"><semantics> <msup> <mn>10</mn> <mn>14</mn> </msup> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mi>μ</mi> </semantics></math> = <math display="inline"><semantics> <mi>μ</mi> </semantics></math> + <math display="inline"><semantics> <msup> <mn>10</mn> <mn>14</mn> </msup> </semantics></math>; (<b>d</b>) Difference image between (<b>a</b>) and (<b>b</b>), (<b>e</b>) Difference image between (<b>a</b>) and (<b>c</b>); (<b>f</b>) Difference image between (<b>b</b>) and (<b>c</b>).</p> "> Figure 10
<p>Histogram: (<b>a</b>) Boat, (<b>b</b>) Lena, (<b>c</b>) Peppers, (<b>d</b>) Boat plaintext histogram, (<b>e</b>) Lena plaintext histogram, (<b>f</b>) Peppers plaintext histogram, (<b>g</b>) R-channel ciphertext histogram, (<b>h</b>) G-channel ciphertext histogram, and (<b>i</b>) B-channel ciphertext histogram.</p> "> Figure 11
<p>Plaintext image correlation analysis: (<b>a</b>) Boat horizontal direction, (<b>b</b>) Boat vertical direction, (<b>c</b>) Boat diagonal direction, (<b>d</b>) Lena horizontal direction, (<b>e</b>) Lena vertical direction, (<b>f</b>) Lena diagonal direction, (<b>g</b>) Peppers horizontal direction, (<b>h</b>) Peppers vertical direction, and (<b>i</b>) Peppers diagonal direction.</p> "> Figure 12
<p>Ciphertext image correlation analysis: (<b>a</b>) R-channel ciphertext horizontal direction, (<b>b</b>) R-channel ciphertext vertical direction, (<b>c</b>) R-channel ciphertext diagonal direction, (<b>d</b>) G-channel ciphertext horizontal direction, (<b>e</b>) G-channel ciphertext vertical direction, (<b>f</b>) G-channel ciphertext diagonal direction, (<b>g</b>) B-channel ciphertext horizontal direction, (<b>h</b>) B-channel ciphertext vertical direction, and (<b>i</b>) B-channel ciphertext diagonal direction.</p> "> Figure 13
<p>Anti-cropping attack analysis.</p> "> Figure 14
<p>Anti-noise attack analysis: (<b>a</b>) <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>%</mo> </mrow> </semantics></math> pepper noise; (<b>b</b>) <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>%</mo> </mrow> </semantics></math> pepper noise; (<b>c</b>) <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>%</mo> </mrow> </semantics></math> pepper noise; (<b>d</b>) <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math> pepper noise; (<b>e</b>) <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math> pepper noise; (<b>f</b>) <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math> pepper noise; (<b>g</b>) <math display="inline"><semantics> <mrow> <mn>20</mn> <mo>%</mo> </mrow> </semantics></math> pepper noise; (<b>h</b>) <math display="inline"><semantics> <mrow> <mn>20</mn> <mo>%</mo> </mrow> </semantics></math> pepper noise; (<b>i</b>) <math display="inline"><semantics> <mrow> <mn>20</mn> <mo>%</mo> </mrow> </semantics></math> pepper noise.</p> ">
Abstract
:1. Introduction
- (1)
- Although the image encryption algorithm based on a single chaotic map can achieve a certain encryption effect, the complexity is not high. Therefore, this paper proposes a cascaded modulated chaotic system (CMCS) as the key generation source.
- (2)
- To solve the problem that the scrambling and diffusion steps are independent of the plaintext image, the initial value of CMCS and the generation of system parameters depend on the plaintext image, which can effectively brute force and plaintext attacks.
- (3)
- In the scrambling process, three gray images are fused into a color image, and the three images are divided into blocks. On the basis, through cross-plane scrambling, the three images influence each other. In addition, the chaotic sequence is used to scramble intra-block to reduce the correlation between adjacent pixels.
- (4)
- According to the characteristics of the bit-level matrix, it is divided into four types. The corresponding diffusion algorithm is adopted for the grouping type to make the pixel distribution more average. Meanwhile, the non-sequential diffusion of the hexadecimal addition and subtraction rule makes the non-linear relationship between plaintext and ciphertext more complex. It improves the ability of the algorithm to resist selective plaintext attacks.
2. Background
2.1. Henon Map
2.2. Logistic Map
2.3. Sine Map
2.4. Iterative Map
3. Chaos System
3.1. Definition of Chaotic System
3.2. Examples of the Proposed Chaotic System
3.2.1. Logistic-Henon Cascade Map (LHCM)
3.2.2. Henon-Sine Cascade Map (HSCM)
3.2.3. Henon-Iterative Cascade Map (HICM)
4. Encryption and Decryption Algorithm
4.1. Generating the Initial Value Key
Algorithm 1 Generate the initial values and control parameters of the chaotic map |
Input: key k with length of 512 bits. |
Output: Initial state (), (), () and (). |
1: ; |
2: ; |
3: ; |
4: ; |
5: for j = 1 to 4 do |
6: ; |
7: end |
8: for i = 1 to 4 do |
9: ; |
10: ; |
11: ; |
12: ; |
13: end |
4.2. Image Preprocessing
4.3. Double Scrambling
4.4. Bit-Level Grouping Diffusion
4.4.1. Definition of Bit Spiral Transformation
4.4.2. Perfect Shuffle
4.4.3. DNA Encoding
4.4.4. Definition of V-Shaped Diffusion
4.5. Hexadecimal Addition and Subtraction Diffusion Operations
4.6. Decryption Algorithm
5. Simulation Results and Security Analysis
5.1. Key Space Analysis
5.2. Key Sensitivity Analysis
5.3. Histogram Analysis
5.4. Correlation Analysis
5.5. Information Entropy Analysis
5.6. Anti-Cropping Attack Analysis
5.7. Anti-Noise Attack Analysis
5.8. Analysis of Anti-Differential Attack
5.9. NIST Test
5.10. Analysis of Encryption Efficiency
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ping, P.; Xu, F.; Wang, Z. Image encryption based on non-affine and balanced cellular automata. Signal Process. 2014, 105, 419–429. [Google Scholar] [CrossRef]
- Cao, C.; Sun, K.; Liu, W. A novel bit-level image encryption algorithm based on 2D-LICM hyperchaotic map. Signal Process. 2018, 143, 122–133. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y. Image encryption using 2D Logistic-adjusted-Sine map. Inf. Sci. 2016, 339, 237–253. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y.; Huang, H. Cosine-transform-based chaotic system for image encryption. Inf. Sci. 2019, 480, 403–419. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, B.; Wu, Z. Research on color image encryption algorithm based on bit-plane and Chen Chaotic System. Entropy 2022, 24, 186. [Google Scholar] [CrossRef]
- Jain, K.; Aji, A.; Krishnan, P. Medical image encryption scheme using multiple chaotic maps. Pattern Recognit. Lett. 2021, 152, 356–364. [Google Scholar] [CrossRef]
- Yi, K.; Sun, X.; Shi, J. An Image Encryption Algorithm Based on Chaotic Sequences. J. Comput. Aided Des. Comput. Graph. 2000, 12, 672–676. [Google Scholar]
- Wang, Y.Y.; Wang, Y.R.; Wang, Y.; Li, H.J.; Sun, W.J. Optical image encryption based on binary Fourier transform computer-generated hologram and pixel scrambling technology. Opt. Lasers Eng. 2007, 45, 761–765. [Google Scholar] [CrossRef]
- Fridrich, J. Image encryption based on chaotic maps. In Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October 1997; Volume 2, pp. 1105–1110. [Google Scholar]
- Chai, X. An image encryption algorithm based on bit level Brownian motion and new chaotic systems. Multimed. Tools Appl. 2017, 76, 1159–1175. [Google Scholar] [CrossRef]
- Laiphrakpam, D.S.; Khumanthem, M.S. A robust image encryption scheme based on chaotic system and elliptic curve over finite field. Multimed. Tools Appl. 2018, 77, 8629–8652. [Google Scholar] [CrossRef]
- Talhaoui, M.Z.; Wang, X. A new fractional one dimensional chaotic map and its application in high-speed image encryption. Inf. Sci. 2021, 550, 13–26. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Zhong, Z.; Yu, L.; Shan, M.; Zhao, Y. Hyperchaotic image encryption using phase-truncated fractional Fourier transform and DNA-level operation. Opt. Lasers Eng. 2021, 143, 106626. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, S.; Zhang, J. A hybrid domain image encryption algorithm based on improved henon map. Entropy 2022, 24, 287. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, A.; Wang, X. A novel one-dimensional sine powered chaotic map and its application in a new image encryption scheme. Inf. Sci. 2020, 520, 46–62. [Google Scholar] [CrossRef]
- Wang, X.; Guan, N. A novel chaotic image encryption algorithm based on extended Zigzag confusion and RNA operation. Opt. Laser Technol. 2020, 131, 106366. [Google Scholar] [CrossRef]
- Hosny, K.M.; Kamal, S.T.; Darwish, M.M. A color image encryption technique using block scrambling and chaos. Multimed. Tools Appl. 2022, 81, 505–525. [Google Scholar] [CrossRef]
- Feixiang, Z.; Mingzhe, L.; Kun, W.; Hong, Z. Color image encryption via Hénon-zigzag map and chaotic restricted Boltzmann machine over Blockchain. Opt. Laser Technol. 2021, 135, 106610. [Google Scholar] [CrossRef]
- Yildirim, M. A color image encryption scheme reducing the correlations between R, G, B components. Optik 2021, 237, 166728. [Google Scholar] [CrossRef]
- Rajendran, S.; Krithivasan, K.; Doraipandian, M. A novel cross cosine map based medical image cryptosystem using dynamic bit-level diffusion. Multimed. Tools Appl. 2021, 80, 24221–24243. [Google Scholar] [CrossRef]
- Zhu, H.; Dai, L.; Liu, Y.; Wu, L. A three-dimensional bit-level image encryption algorithm with Rubik’s cube method. Math. Comput. Simul. 2021, 185, 754–770. [Google Scholar] [CrossRef]
- Li, C.L.; Zhou, Y.; Li, H.M.; Feng, W.; Du, J.R. Image encryption scheme with bit-level scrambling and multiplication diffusion. Multimed. Tools Appl. 2021, 80, 18479–18501. [Google Scholar] [CrossRef]
- Liu, M.; Ye, G. A new DNA coding and hyperchaotic system based asymmetric image encryption algorithm. Math. Biosci. Eng. 2021, 18, 3887–3906. [Google Scholar] [CrossRef]
- Ghaffari, A. Image compression-encryption method based on two-dimensional sparse recovery and chaotic system. Sci. Rep. 2021, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Su, Y. Image encryption based on compressed sensing and DNA encoding. Signal Process. Image Commun. 2021, 95, 116246. [Google Scholar] [CrossRef]
- Farah, M.B.; Guesmi, R.; Kachouri, A.; Samet, M. A novel chaos based optical image encryption using fractional Fourier transform and DNA sequence operation. Opt. Laser Technol. 2020, 121, 105777. [Google Scholar] [CrossRef]
- Gao, X. A color image encryption algorithm based on an improved Hénon map. Phys. Scr. 2021, 96, 065203. [Google Scholar] [CrossRef]
- Wen, H.; Zhang, C.; Huang, L.; Ke, J.; Xiong, D. Security Analysis of a Color Image Encryption Algorithm Using a Fractional-Order Chaos. Entropy 2021, 23, 258. [Google Scholar] [CrossRef]
- Pak, C.; Huang, L. A new color image encryption using combination of the 1D chaotic map. Signal Process. 2017, 138, 129–137. [Google Scholar] [CrossRef]
- Hoang, T.M.; Thanh, H.X. Cryptanalysis and security improvement for a symmetric color image encryption algorithm. Optik 2018, 155, 366–383. [Google Scholar] [CrossRef]
- Ratan, R.; Yadav, A. Security Analysis of Bit-plane Level Image Encryption Schemes. Def. Sci. J. 2021, 71, 209–221. [Google Scholar] [CrossRef]
- Oravec, J.; Ovsenik, L.; Papaj, J. An Image Encryption Algorithm Using Logistic Map with Plaintext-Related Parameter Values. Entropy 2021, 23, 1373. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, S.; Sivabalakrishnan, M. A hybrid chaotic map with coefficient improved whale optimization-based parameter tuning for enhanced image encryption. Soft Comput. 2021, 25, 5299–5322. [Google Scholar] [CrossRef]
- Luo, Y.; Ouyang, X.; Liu, J.; Cao, L.; Zou, Y. An image encryption scheme based on particle swarm optimization algorithm and hyperchaotic system. Soft Comput. 2022, 26, 5409–5435. [Google Scholar] [CrossRef]
- Xiao, D.; Zhao, M.; Wang, M. Low-cost and secure multi-image encryption scheme based on P-tensor product compressive sensing. Opt. Laser Technol. 2021, 140, 107077. [Google Scholar] [CrossRef]
- Xie, D.; Chen, F.; Luo, Y.; Li, L. One-to-many image encryption with privacy-preserving homomorphic outsourced decryption based on compressed sensing. Digit. Signal Process. 2019, 95, 102587. [Google Scholar] [CrossRef]
- Wen, W.; Hong, Y.; Fang, Y.; Li, M.; Li, M. A visually secure image encryption scheme based on semi-tensor product compressed sensing. Signal Process. 2020, 173, 107580. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L. Multiple-image encryption algorithm based on chaos and gene fusion. Multimed. Tools Appl. 2022, 81, 20021–20042. [Google Scholar] [CrossRef]
- ul Haq, T.; Shah, T. Algebra-chaos amalgam and DNA transform based multiple digital image encryption. J. Inf. Secur. Appl. 2020, 54, 102592. [Google Scholar] [CrossRef]
- Ye, H.S.; Zhou, N.R.; Gong, L.H. Multi-image compression-encryption scheme based on quaternion discrete fractional Hartley transform and improved pixel adaptive diffusion. Signal Process. 2020, 175, 107652. [Google Scholar] [CrossRef]
- Zarebnia, M.; Pakmanesh, H.; Parvaz, R. A fast multiple-image encryption algorithm based on hybrid chaotic systems for gray scale images. Optik 2019, 179, 761–773. [Google Scholar] [CrossRef]
- Sang, Y.; Sang, J.; Alam, M.S. Image encryption based on logistic chaotic systems and deep autoencoder. Pattern Recognit. Lett. 2022, 153, 59–66. [Google Scholar] [CrossRef]
- Hermassi, H.; Rhouma, R.; Belghith, S. Improvement of an image encryption algorithm based on hyper-chaos. Telecommun. Syst. 2013, 52, 539–549. [Google Scholar] [CrossRef]
- Wang, X.; Chen, S.; Zhang, Y. A chaotic image encryption algorithm based on random dynamic mixing. Opt. Laser Technol. 2021, 138, 106837. [Google Scholar] [CrossRef]
- Sun, X.; Shao, Z.; Shang, Y.; Liang, M.; Yang, F. Multiple-image encryption based on cascaded gyrator transforms and high-dimensional chaotic system. Multimed. Tools Appl. 2021, 80, 15825–15848. [Google Scholar] [CrossRef]
- Liansheng, S.; Xiao, Z.; Chongtian, H.; Ailing, T.; Asundi, A.K. Silhouette-free interference-based multiple-image encryption using cascaded fractional Fourier transforms. Opt. Lasers Eng. 2019, 113, 29–37. [Google Scholar] [CrossRef]
0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Rotate | Rotate | Rotate | Horizontally Inversion | Vertically Inversion |
Rule | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
A | 00 | 00 | 01 | 01 | 10 | 10 | 11 | 11 |
T | 11 | 11 | 10 | 10 | 01 | 01 | 00 | 00 |
G | 01 | 10 | 00 | 11 | 00 | 11 | 01 | 10 |
C | 10 | 01 | 11 | 00 | 11 | 00 | 10 | 01 |
Image | Horizontal Direction | Vertical Direction | Diagonal Direction |
---|---|---|---|
Boat | 0.9450 | 0.9758 | 0.9283 |
Peppers | 0.9732 | 0.9847 | 0.9550 |
Lena | 0.9666 | 0.9823 | 0.9566 |
Ref. [35] | 0.0032 | −0.0182 | −0.0021 |
Ref. [36] | 0.0635 | 0.1981 | 0.1698 |
Ref. [37] | 0.0041 | 0.0043 | 0.0084 |
Our scheme | 0.0020 | −0.0006 | −0.0062 |
Algorithm | Image | Information Entropy | |
---|---|---|---|
Plain Image | Cipher Image | ||
Our scheme | Boat | 7.1914 | 7.9998 |
Lena | 7.4451 | ||
Peppers | 7.5937 |
Algorithm | Our Scheme | Ref. [39] | Ref. [40] | Ref. [41] | Ref. [34] |
---|---|---|---|---|---|
Information entropy | 7.9998 | 7.9994 | 7.9996 | 7.9995 | 7.9994 |
Algorithm | NPCR | UACI |
---|---|---|
Our scheme | 99.6289 | 33.5006 |
Ref. [39] | 99.6250 | 33.4510 |
Ref. [40] | 99.1841 | 33.5284 |
Ref. [41] | 99.5907 | 33.4811 |
Ref. [34] | 99.6208 | 33.5025 |
Sub-Tests | p-Value | Proportion | Pass/Fail |
---|---|---|---|
Frequency Test | 0.275709 | 62/64 | Pass |
Block Frequency Test | 0.134686 | 64/64 | Pass |
Cumulative Sums | 0.931952 | 62/64 | Pass |
Runs Test | 0.706149 | 64/64 | Pass |
Longest Run Test | 0.350485 | 64/64 | Pass |
Rank Test | 0.568055 | 61/64 | Pass |
FFT | 0.602458 | 63/64 | Pass |
Non-Overlapping Template Test | 0.772760 | 64/64 | Pass |
Overlapping Template Test | 0.213309 | 64/64 | Pass |
Universal Test | 0.568055 | 63/64 | Pass |
Approximate Entropy Test | 0.637119 | 63/64 | Pass |
Serial Test | 0.437274 | 63/64 | Pass |
Random Excursions Test | 0.585209 | 44/44 | Pass |
Random Excursions Variant Test | 0.739918 | 44/44 | Pass |
Linear Complexity Test | 0.299251 | 64/64 | Pass |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Ge, B.; Xia, C.; Dai, G. Multi-Image Encryption Algorithm Based on Cascaded Modulation Chaotic System and Block-Scrambling-Diffusion. Entropy 2022, 24, 1053. https://doi.org/10.3390/e24081053
Wang T, Ge B, Xia C, Dai G. Multi-Image Encryption Algorithm Based on Cascaded Modulation Chaotic System and Block-Scrambling-Diffusion. Entropy. 2022; 24(8):1053. https://doi.org/10.3390/e24081053
Chicago/Turabian StyleWang, Ting, Bin Ge, Chenxing Xia, and Gaole Dai. 2022. "Multi-Image Encryption Algorithm Based on Cascaded Modulation Chaotic System and Block-Scrambling-Diffusion" Entropy 24, no. 8: 1053. https://doi.org/10.3390/e24081053