Series Representations for Uncertain Fractional IVPs in the Fuzzy Conformable Fractional Sense
<p>(<b>a</b>) Plots of <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>-cut representations of fuzzy exact solution <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <msub> <munder accentunder="true"> <mi>ω</mi> <mo>_</mo> </munder> <mi>ρ</mi> </msub> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <msub> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mi>ρ</mi> </msub> <mfenced> <mi>t</mi> </mfenced> </mrow> </mfenced> </mrow> </semantics></math> and fuzzy approximate solution <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <msubsup> <munder accentunder="true"> <mi>ω</mi> <mo>_</mo> </munder> <mi>ρ</mi> <mn>8</mn> </msubsup> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <msubsup> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mi>ρ</mi> <mn>8</mn> </msubsup> <mfenced> <mi>t</mi> </mfenced> </mrow> </mfenced> </mrow> </semantics></math>, case I. (<b>b</b>) Plots of <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>-cut representations of fuzzy exact solution <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <msub> <munder accentunder="true"> <mi>ω</mi> <mo>_</mo> </munder> <mi>ρ</mi> </msub> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <msub> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mi>ρ</mi> </msub> <mfenced> <mi>t</mi> </mfenced> </mrow> </mfenced> </mrow> </semantics></math> and fuzzy approximate solution <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <msubsup> <munder accentunder="true"> <mi>ω</mi> <mo>_</mo> </munder> <mi>ρ</mi> <mn>8</mn> </msubsup> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <msubsup> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mi>ρ</mi> <mn>8</mn> </msubsup> <mfenced> <mi>t</mi> </mfenced> </mrow> </mfenced> </mrow> </semantics></math>, case II, for Application 1 at <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mfenced close="]" open="["> <mrow> <mn>0</mn> <mo>,</mo> <mn>1</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p> "> Figure 2
<p>(<b>a</b>) 3D-Surfaces Plot of <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <msub> <munder accentunder="true"> <mi>ω</mi> <mo>_</mo> </munder> <mi>ρ</mi> </msub> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <msub> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mi>ρ</mi> </msub> <mfenced> <mi>t</mi> </mfenced> </mrow> </mfenced> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, case I. (<b>b</b>) 3D-Surfaces Plot of <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <msubsup> <munder accentunder="true"> <mi>ω</mi> <mo>_</mo> </munder> <mi>ρ</mi> <mn>8</mn> </msubsup> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <msubsup> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mi>ρ</mi> <mn>8</mn> </msubsup> <mfenced> <mi>t</mi> </mfenced> </mrow> </mfenced> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, case I. (<b>c</b>) 3D-Surfaces Plot of <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <msub> <munder accentunder="true"> <mi>ω</mi> <mo>_</mo> </munder> <mi>ρ</mi> </msub> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <msub> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mi>ρ</mi> </msub> <mfenced> <mi>t</mi> </mfenced> </mrow> </mfenced> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, case II. (<b>d</b>) 3D-Surfaces Plot of <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <msubsup> <munder accentunder="true"> <mi>ω</mi> <mo>_</mo> </munder> <mi>ρ</mi> <mn>8</mn> </msubsup> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <msubsup> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mi>ρ</mi> <mn>8</mn> </msubsup> <mfenced> <mi>t</mi> </mfenced> </mrow> </mfenced> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, case II; for Application 1.</p> "> Figure 3
<p>(<b>a</b>) Plots of <math display="inline"><semantics> <mrow> <mn>0.5</mn> </mrow> </semantics></math>-cut representations of the fuzzy exact solution <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <msub> <munder accentunder="true"> <mi>ω</mi> <mo>_</mo> </munder> <mrow> <mn>0.5</mn> </mrow> </msub> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <msub> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mrow> <mn>0.5</mn> </mrow> </msub> <mfenced> <mi>t</mi> </mfenced> </mrow> </mfenced> </mrow> </semantics></math> and the fuzzy approximate solution <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <msubsup> <munder accentunder="true"> <mi>ω</mi> <mo>_</mo> </munder> <mrow> <mn>0.5</mn> </mrow> <mn>6</mn> </msubsup> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <msubsup> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mrow> <mn>0.5</mn> </mrow> <mn>6</mn> </msubsup> <mfenced> <mi>t</mi> </mfenced> </mrow> </mfenced> </mrow> </semantics></math>, case I. (<b>b</b>) Plots of <math display="inline"><semantics> <mrow> <mn>0.5</mn> </mrow> </semantics></math>-cut representations of the fuzzy exact solution <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <msub> <munder accentunder="true"> <mi>ω</mi> <mo>_</mo> </munder> <mrow> <mn>0.5</mn> </mrow> </msub> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <msub> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mrow> <mn>0.5</mn> </mrow> </msub> <mfenced> <mi>t</mi> </mfenced> </mrow> </mfenced> </mrow> </semantics></math> and the fuzzy approximate solution <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <msubsup> <munder accentunder="true"> <mi>ω</mi> <mo>_</mo> </munder> <mrow> <mn>0.5</mn> </mrow> <mn>6</mn> </msubsup> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <msubsup> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mrow> <mn>0.5</mn> </mrow> <mn>6</mn> </msubsup> <mfenced> <mi>t</mi> </mfenced> </mrow> </mfenced> </mrow> </semantics></math>, case II, for Application 2, at different values of <math display="inline"><semantics> <mrow> <mi>β</mi> </mrow> </semantics></math>.</p> "> Figure 4
<p>(<b>a</b>) Plots of <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>-cut representations of the fuzzy exact solution <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <msub> <munder accentunder="true"> <mi>ω</mi> <mo>_</mo> </munder> <mi>ρ</mi> </msub> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <msub> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mi>ρ</mi> </msub> <mfenced> <mi>t</mi> </mfenced> </mrow> </mfenced> </mrow> </semantics></math> and the fuzzy approximate solution <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <msubsup> <munder accentunder="true"> <mi>ω</mi> <mo>_</mo> </munder> <mi>ρ</mi> <mn>8</mn> </msubsup> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <msubsup> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mi>ρ</mi> <mn>8</mn> </msubsup> <mfenced> <mi>t</mi> </mfenced> </mrow> </mfenced> </mrow> </semantics></math>, case I. (<b>b</b>) Plots of <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>-cut representations of the fuzzy exact solution <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <msub> <munder accentunder="true"> <mi>ω</mi> <mo>_</mo> </munder> <mi>ρ</mi> </msub> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <msub> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mi>ρ</mi> </msub> <mfenced> <mi>t</mi> </mfenced> </mrow> </mfenced> </mrow> </semantics></math> and fuzzy approximate solution <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <msubsup> <munder accentunder="true"> <mi>ω</mi> <mo>_</mo> </munder> <mi>ρ</mi> <mn>8</mn> </msubsup> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <msubsup> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mi>ρ</mi> <mn>8</mn> </msubsup> <mfenced> <mi>t</mi> </mfenced> </mrow> </mfenced> </mrow> </semantics></math>, case II, for Application 2, at <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>.</mo> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Preliminaries
- is upper semi-continuous, i.e., , .
- is convex, i.e., for each , and , we have .
- is normal, i.e., there is at least one pointsuch that
- is compact set.
- (i)
- is a bounded non-decreasing function.
- (ii)
- is a bounded non-increasing function.
- (iii)
- .
- (iv)
- For each,and.
- (v)
- and.
- (i)
- The H-differences,exist for each sufficiently small, and.
- (ii)
- The H-differences,exist, for each sufficiently small, and.
- (i)
- For each there exists such that the H-differences: and exists for allζ∈ [0,δ).
- (ii)
- For eachandthere exists a constantsuch thatandfor all. Then, the set of functionsis-th conformable differentiable and its derivative is, wherefor each
- (i)
- If is -fuzzy conformable differentiable, then and are -th conformable differentiable functions on and .
- (ii)
- If is -fuzzy conformable differentiable, then and are -th conformable differentiable functions on and .
3. Fuzzy Conformable Fractional Initial Value Problems
- (1)
- If is -fuzzy conformable differentiable, then the corresponding crisp system of the IVPs (1) and (2) will be written in the form of the following:
- (2)
- If is -fuzzy conformable differentiable, then the corresponding crisp system of IVPs (1) and (2) will be written in the form of the following:The formulation of the fuzzy fractional IVPs (1) and (2) along with Theorem 2.3 show us how to deal with numerical solutions of fuzzy fractional IVPs. The original fuzzy fractional IVPs can be converted into a crisp system of fractional IVPs equivalently. This indicates that no need to rewrite the numerical methods for the crisp systems of the fractional IVPs in the fuzzy setting, but, instead, we may use the numerical methods directly on the obtained crisp systems.
4. Primary Principle of Residual Power Series Approach
- ▪
- and for each .
- ▪
- and for each .
- ▪
- and for .
Algorithm 1. To deduce the approximate solutions of (3) in detail, one can perform the following manner by one of the known software packages like MATHEMATICA 12. |
Step I: Write the system (3) in the form
|
Step II: Suppose that the solutions of the system (3) about the initial point have the fractional PS expansion forms
|
Step III: Set and , then the -th fractional PS approximate solutions and of can be written respectively as
|
Step IV: Define the -th fractional residual functions and such that
|
Step V: Substitute and in and so that
|
Step VI: Consider , in Step V, then solve and at for and . Therefore, the first fractional PS approximate solutions and will be obtained. |
Step VII: For in Step V, apply the operator -th on both sides of the resulting fractional equations such that and . Then, by solving and , and can be obtained. |
Step VIII: Write the forms of the obtained coefficients and in terms of -th fractional PS expansions and and repeat the above steps to reach a closed-form in terms of infinite series as in Step II. Elsewhere, the solution obtained will be representing the -th fractional PS approximate solutions of the crisp system (3). |
5. Applications and Numerical Simulations
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
, | , |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Kandel, A. Fuzzy Mathematical Techniques with Applications; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1986. [Google Scholar]
- Mendel, J.M. Fuzzy logic systems for engineering: A tutorial. Proc. IEEE 1995, 83, 345–377. [Google Scholar] [CrossRef] [Green Version]
- Bede, B.; Gal, S.G. Generalizations of the differentiability of fuzzy number value functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Román-Flores, H. On new solutions of fuzzy differential equations. Chaos Solitons Fractals 2008, 38, 112–119. [Google Scholar] [CrossRef]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Hasan, S.; Al-Smadi, M.; El-Ajou, A.; Momani, S.; Hadid, S.; Al-Zhour, Z. Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system. Chaos Solitons Fractals 2021, 143, 110506. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Abu Arqub, O.; Zeidan, D. Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications. Chaos Solitons Fractals 2021, 146, 110891. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Abu Arqub, O.; Gaith, M. Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive reproducing kernel framework. Math. Methods Appl. Sci. 2021, 44, 8472–8489. [Google Scholar] [CrossRef]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent: Part II. Geophys. J. Inter. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Abu Arqub, O.; Al-Smadi, M. An adaptive numerical approach for the solutions of fractional advection-diffusion and dispersion equations in singular case under Riesz’s derivative operator. Phys. A Stat. Mech. Its Appl. 2020, 540, 123257. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Abu Arqub, O. Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Appl. Math. Comput. 2019, 342, 280–294. [Google Scholar] [CrossRef]
- Akinyemi, L.; Iyiola, O.S.; Akpan, U. Iterative methods for solving fourth- and sixth-order time-fractional Cahn-Hillard equation. Math. Methods Appl. Sci. 2020, 43, 4050–4074. [Google Scholar] [CrossRef] [Green Version]
- Akinyemi, L.; Iyiola, O.S. Exact and approximate solutions of time-fractional models arising from physics via Shehu transform. Math. Methods Appl. Sci. 2020, 43, 7442–7464. [Google Scholar] [CrossRef]
- Akinyemi, L.; Iyiola, O.S. A reliable technique to study nonlinear time-fractional coupled Korteweg–de Vries equations. Adv. Differ. Equ. 2020, 2020, 169. [Google Scholar] [CrossRef] [Green Version]
- Şenol, M.; Iyiola, O.S.; Daei Kasmaei, H.; Akinyemi, L. Efficient analytical techniques for solving time-fractional nonlinear coupled Jaulent–Miodek system with energy-dependent Schrödinger potential. Adv. Differ. Equ. 2019, 2019, 462. [Google Scholar] [CrossRef]
- Akinyemi, L.; Iyiola, O.S. Analytical Study of (3+1)-Dimensional Fractional-Reaction Diffusion Trimolecular Models. Int. J. Appl. Comput. Math. 2021, 7, 92. [Google Scholar] [CrossRef]
- Hasan, S.; El-Ajou, A.; Hadid, S.; Al-Smadi, M.; Momani, S. Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system. Chaos Solitons Fractals 2020, 133, 109624. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Lakshmikantham, V.; Nieto, J.J. On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. Theory Methods Appl. 2010, 72, 2859–2862. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Freihat, A.; Abu Arqub, O.; Shawagfeh, N. A novel multistep generalized differential transform method for solving fractional-order Lü chaotic and hyperchaotic systems. J. Comput. Anal. Appl. 2015, 19, 713–724. [Google Scholar]
- Altawallbeh, Z.; Al-Smadi, M.; Komashynska, I.; Ateiwi, A. Numerical Solutions of Fractional Systems of Two-Point BVPs by Using the Iterative Reproducing Kernel Algorithm. Ukr. Math. J. 2018, 70, 687–701. [Google Scholar] [CrossRef]
- Khodadadi, E.; Çelik, E. The variational iteration method for fuzzy fractional differential equations with uncertainty. Fixed Point Theory Appl. 2013, 2013, 13. [Google Scholar] [CrossRef] [Green Version]
- Momani, S.; Djeddi, N.; Al-Smadi, M.; Al-Omari, S. Numerical investigation for Caputo-Fabrizio fractional Riccati and Bernoulli equations using iterative reproducing kernel method. Appl. Numer. Math. 2021, 170, 418–434. [Google Scholar] [CrossRef]
- Saadeh, R.; Alaroud, M.; Al-Smadi, M.; Ahmad, R.R.; Salma Din, U.K. Application of fractional residual power series algorithm to solve Newell–Whitehead–Segel equation of fractional order. Symmetry 2019, 11, 1431. [Google Scholar] [CrossRef] [Green Version]
- Al-Smadi, M. Fractional residual series for conformable time-fractional Sawada–Kotera–Ito, Lax, and Kaup–Kupershmidt equations of seventh order. Math. Methods Appl. Sci. 2021, 44, 1–21. [Google Scholar] [CrossRef]
- Freihet, A.; Hasan, S.; Alaroud, M.; Al-Smadi, M.; Ahmad, R.R.; Salma Din, U.K. Toward computational algorithm for time-fractional Fokker–Planck models. Adv. Mech. Eng. 2019, 11, 1687814019881039. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Abu Arqub, O.; Hadid, S. Approximate solutions of nonlinear fractional Kundu-Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series method. Phys. Scr. 2020, 95, 105205. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Abu Arqub, O.; Momani, S. Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense. Phys. Scr. 2020, 95, 075218. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S.; Singh, M. Residual power series method for fractional Sharma-Tasso-Olever equation. Commun. Numer. An. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Djeddi, N.; Momani, S.; Al-Omari, S.; Araci, S. An attractive numerical algorithm for solving nonlinear Caputo–Fabrizio fractional Abel differential equation in a Hilbert space. Adv. Differ. Equ. 2021, 2021, 271. [Google Scholar] [CrossRef]
- Agarwal, P.; Jain, S.; Ahmad, B.; Al-Omari, S. Certain recent fractional integral inequalities associated with the hypergeometric operators. J. King Saud Uni. Sci. 2015, 2015, 17. [Google Scholar]
- Al-Smadi, M.; Abu Arqub, O.; Shawagfeh, N.; Momani, S. Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method. Appl. Math. Comput. 2016, 291, 137–148. [Google Scholar] [CrossRef]
- Hasan, S.; Djeddi, N.; Al-Smadi, M.; Al-Omari, S.; Momani, S.; Fulga, A. Numerical solvability of generalized Bagley–Torvik fractional models under Caputo–Fabrizio derivative. Adv. Differ. Equ. 2021, 2021, 469. [Google Scholar] [CrossRef]
- Hasan, S.; Al-Smadi, M.; Freihet, A.; Momani, S. Two computational approaches for solving a fractional obstacle system in Hilbert space. Adv. Differ. Equ. 2019, 2019, 55. [Google Scholar] [CrossRef] [Green Version]
- Al-Smadi, M. Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation. Ain Shams Eng. J. 2018, 9, 2517–2525. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Alaroud, M.; Al-Smadi, M.; Ahmad, R.R.; Salma Din, U.K. An analytical numerical method for solving fuzzy fractional Volterra integro-differential equations. Symmetry 2019, 11, 205. [Google Scholar] [CrossRef] [Green Version]
- Alaroud, M.; Al-Smadi, M.; Ahmad, R.R.; Salma Din, U.K. Computational optimization of residual power series algorithm for certain classes of fuzzy fractional differential equations. Int. J. Differ. Equ. 2018, 2018, 8686502. [Google Scholar] [CrossRef]
- Alaroud, M. Application of Laplace residual power series method for approximate solutions of fractional IVP’s. Alex. Eng. J. 2021, 61, 1585–1595. [Google Scholar] [CrossRef]
- Clemence-Mkhope, D.P.; Clemence-Mkhope, B.G.B. The Limited Validity of the Conformable Euler Finite Difference Method and an Alternate Definition of the Conformable Fractional Derivative to Justify Modification of the Method. Math. Comput. Appl. 2021, 26, 66. [Google Scholar] [CrossRef]
- Momani, S.; Abu Arqub, O.; Freihat, A.; Al-Smadi, M. Analytical approximations for Fokker-Planck equations of fractional order in multistep schemes. Appl. Comput. Math. 2016, 15, 319–330. [Google Scholar]
- Freihet, A.; Hasan, S.; Al-Smadi, M.; Gaith, M.; Momani, S. Construction of fractional power series solutions to fractional stiff system using residual functions algorithm. Adv. Differ. Equ. 2019, 2019, 95. [Google Scholar] [CrossRef] [Green Version]
- Al-Smadi, M.; Abu Arqub, O.; Hadid, S. An attractive analytical technique for coupled system of fractional partial differential equations in shallow water waves with conformable derivative. Commun. Theor. Phys. 2020, 72, 085001. [Google Scholar] [CrossRef]
- Moaddy, K.; Al-Smadi, M.; Hashim, I. A novel representation of the exact solution for differential algebraic equations system using residual power-series method. Discret. Dyn. Nat. Soc. 2015, 2015, 205207. [Google Scholar] [CrossRef]
- Komashynska, I.; Al-Smadi, M.; Abu Arqub, O.; Momani, S. An efficient analytical method for solving singular initial value problems of nonlinear systems. Appl. Math. Inf. Sci. 2016, 10, 647–656. [Google Scholar] [CrossRef]
- Harir, A.; Melliani, S.; Chadli, L.S. Fuzzy generalized conformable fractional derivative. Adv. Fuzzy Syst. 2020, 2020, 1954975. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Freihat, A.; Khalil, H.; Momani, S.; Khan, R.A. Numerical Multistep Approach for Solving Fractional Partial Differential Equations. Int. J. Comput. Methods 2017, 14, 1750029. [Google Scholar] [CrossRef]
- Gumah, G.; Naser, M.; Al-Smadi, M.; Al-Omari, S.; Baleanu, D. Numerical solutions of hybrid fuzzy differential equations in a Hilbert space. Appl. Numer. Math. 2020, 151, 402–412. [Google Scholar] [CrossRef]
- Gumah, G.; Naser, M.; Al-Smadi, M.; Al-Omari, S. Application of reproducing kernel Hilbert space, method for solving second-order fuzzy Volterra integro-differential equation. Adv. Differ. Equ. 2018, 2018, 475. [Google Scholar] [CrossRef] [Green Version]
- Chandak, S.; Suthar, D.L.; Al-Omari, S.K.; Gulyaz-Ozyurt, S. Estimates of classes of generalized special functions and their application in the fractional (k,s)-calculus theory. J. Funct. Spaces Vol. 2021, 2021, 9582879. [Google Scholar] [CrossRef]
- Alaroud, M.; Tahat, N.; Al-Omari, S.; Suthar, D.L.; Gulyaz-Ozyurt, S. An attractive approach associated with transform functions for solving certain fractional Swift-Hohenberg equation. J. Funct. Spaces. 2021, 2021, 3230272. [Google Scholar] [CrossRef]
- Al-Omari, S.; Dayalal Suthar, D.; Araci, S. A fractional q-integral operator associated with a certain class of q-Bessel functions and q-generating series. Adv. Differ. Equ. 2021, 2021, 441. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Dutta, H.; Hasan, S.; Momani, S. On numerical approximation of Atangana-Baleanu-Caputo fractional integro-differential equations under uncertainty in Hilbert Space. Math. Model. Nat. Phenom. 2021, 16, 41. [Google Scholar] [CrossRef]
RPSM | RKHSM | RPSM | RKHSM | ||
---|---|---|---|---|---|
RPSM | RKHSM | RPSM | RKHSM | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bataineh, M.; Alaroud, M.; Al-Omari, S.; Agarwal, P. Series Representations for Uncertain Fractional IVPs in the Fuzzy Conformable Fractional Sense. Entropy 2021, 23, 1646. https://doi.org/10.3390/e23121646
Bataineh M, Alaroud M, Al-Omari S, Agarwal P. Series Representations for Uncertain Fractional IVPs in the Fuzzy Conformable Fractional Sense. Entropy. 2021; 23(12):1646. https://doi.org/10.3390/e23121646
Chicago/Turabian StyleBataineh, Malik, Mohammad Alaroud, Shrideh Al-Omari, and Praveen Agarwal. 2021. "Series Representations for Uncertain Fractional IVPs in the Fuzzy Conformable Fractional Sense" Entropy 23, no. 12: 1646. https://doi.org/10.3390/e23121646