New Parameterized Inequalities for η-Quasiconvex Functions via (p, q)-Calculus
Abstract
:1. Introduction
2. Preliminaries of , -Calculus and Some Inequalities
- 1.
- 2.
- ,
- 1.
- 2.
- 3.
- , .
3. ()-Derivatives and Integrals
4. Auxiliary Results
5. Main Results
- (i)
- (ii)
- (i)
- (ii)
- (iii)
- (iv)
- (i)
- (ii)
- (iii)
- (iv)
6. Application to Special Means
- 1.
- Arithmetic mean
- 2.
- Generalized logarithmic mean
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Universitext; Springer: New York, NY, USA, 2002. [Google Scholar]
- Gauchman, H. Integral inequalities in q-calculus. Comput. Math. Appl. 2004, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Rashid, S.; Idrees, M.; Baleanu, D.; Chu, Y.M. Two-variable quantum integral inequalities of Simpson-type based on higher-order generalized strongly preinvex and quasi-preinvex functions. Symmetry 2020, 12, 51. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Kalsoom, H.; Wu, S. Some new quantum Hermite–Hadamard-type estimates within a class of generalized (s, m)-preinvex functions. Symmetry 2019, 11, 1283. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Wu, J.D.; Hussain, S.; Latif, M.A. Simpson’s type inequalities for co-ordinated convex functions on quantum calculus. Symmetry 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Kalsoom, H.; Budak, H.; Idrees, M. q-Hermite–Hadamard Inequalities for Generalized Exponentially (s, m, η)-Preinvex Functions. J. Math. 2021, 2021, 5577340. [Google Scholar] [CrossRef]
- Kalsoom, H.; Idrees, M.; Baleanu, D.; Chu, Y.M. New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of-Polynomial Prevexity of Functions. J. Funct. Spaces 2020, 2020, 3720798. [Google Scholar] [CrossRef]
- Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite-Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef] [Green Version]
- You, X.; Kara, H.; Budak, H.; Kalsoom, H. Quantum Inequalities of Hermite—Hadamard Type for r-Convex Functions. J. Math. 2021, 2021, 6634614. [Google Scholar] [CrossRef]
- Chu, H.; Kalsoom, H.; Rashid, S.; Idrees, M.; Safdar, F.; Chu, Y.M.; Baleanu, D. Quantum Analogs of Ostrowski-Type Inequalities for Raina’s Function correlated with Coordinated Generalized Φ-Convex Functions. Symmetry 2020, 12, 308. [Google Scholar] [CrossRef] [Green Version]
- Alp, N.; Sarıkaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Nwaeze, E.R.; Tameru, A.M. New parameterized quantum integral inequalities via η-quasiconvexity. Adv. Diff. Equ. 2019, 2019, 425. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Mohammad, N.; Nwaeze, E.R.; Chu, Y.M. Quantum Hermite-Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, 2020, 99. [Google Scholar] [CrossRef]
- Chakrabarti, M.R.; Jagannathan, R. A (p, q)-oscillator realization of two-paramenter quantum algebras. J. Phys. A Math. Gen. 1991, 24, L711–L718. [Google Scholar] [CrossRef]
- Tunç, M.; Göv, E. (p, q)-integral inequalities for convex functions. RGMIA Res. Rep. Coll. 2016, 19, 98. [Google Scholar]
- Kalsoom, H.; Ali, M.A.; Idrees, M.; Agarwal, P.; Arif, M. New Post Quantum Analogues of Hermite–Hadamard Type Inequalities for Interval-Valued Convex Functions. Math. Probl. Eng. 2021, 2021, 5529650. [Google Scholar] [CrossRef]
- Kunt, M.; İşcan, İ.; Alp, N.; Sarikaya, M.Z. (p, q)-Hermite-Hadamard inequalities and (p, q)-estimates for midpoint type inequalities via convex and quasi-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2018, 112, 969–992. [Google Scholar] [CrossRef]
- Latif, M.A.; Kunt, M.; Dragomir, S.S.; İşcan, İ. Post-quantum trapezoid type inequalities. AIMS Math. 2020, 5, 4011–4026. [Google Scholar] [CrossRef]
- Kalsoom, H.; Latif, M.A.; Rashid, S.; Baleanu, D.; Chu, Y.M. New (p, q)-estimates for different types of integral inequalities via (α, m)-convex mappings. Open Math. 2020, 18, 1830–1854. [Google Scholar] [CrossRef]
- Klasoom, H.; Minhyung, C. Trapezoidal (p, q)-Integral Inequalities Related to (η1, η2)-convex Functions with Applications. Int. J. Theor. Phys. 2021, 60, 2627–2641. [Google Scholar] [CrossRef]
- Sadjang, P.N. On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas. arXiv 2013, arXiv:1309.3934v1. [Google Scholar]
- Kalsoom, H.; Amer, M.; Junjua, M.U.; Hussain, S.; Shahzadi, G. Some (p, q)-estimates of Hermite-Hadamard-type inequalities for coordinated convex and quasi-convex functions. Mathematics 2019, 7, 683. [Google Scholar] [CrossRef] [Green Version]
- Vivas-Cortez, M.; Ali, M.A.; Budak, H.; Kalsoom, H.; Agaewaal, P. Some New Hermite–Hadamard and Related Inequalities for Convex Functions via (p, q)-Integral. Entropy 2021, 23, 828. [Google Scholar] [CrossRef] [PubMed]
- Kalsoom, H.; Idrees, M.; Kashuri, A.; Awan, M.U.; Chu, Y.M. Some new (p1p2, q1q2)-estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity. AIMS Math 2020, 5, 7122–7144. [Google Scholar] [CrossRef]
- Kalsoom, H.; Vivas-Cortez, M.; Latif, M.A. Trapezoidal-Type Inequalities for Strongly Convex and Quasi-Convex Functions via Post-Quantum Calculus. Entropy 2021, 23, 1238. [Google Scholar] [CrossRef]
- Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 82. [Google Scholar]
- Hadamard, J. Etude sur les propriétés des fonctions entéres et en particulier dune fonction considerée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. New inequaities of Hermite-Hadamard’s type. Res. Rep. Collect. 2009, 12, 7. [Google Scholar]
- Kalsoom, H.; Hussain, S.; Rashid, S. Hermite-Hadamard type integral inequalities for functions whose mixed partial derivatives are co-ordinated preinvex. Punjab Univ. J. Math. 2020, 52, 63–76. [Google Scholar]
- Kalsoom, H.; Hussain, S. Some Hermite-Hadamard type integral inequalities whose n-times differentiable functions are s-logarithmically convex functions. Punjab Univ. J. Math. 2019, 2019, 65–75. [Google Scholar]
- Alomari, M.; Darius, M.; Dragomir, S.S. Inequalities of Hermite–Hadamard’ type for functions whose derivatives absolute values are quasi-convex. RGMIA Res. Rep. Coll. 2009, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Polyak, B.T. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet mathematics. Doklady 1966, 166, 72–75. [Google Scholar]
- Rashid, S.; Kalsoom, H.; Hammouch, Z.; Ashraf, R.; Baleanu, D.; Chu, Y.M. New multi-parametrized estimates having pth-order differentiability in fractional calculus for predominating h¯-convex functions in Hilbert space. Symmetry 2020, 12, 222. [Google Scholar] [CrossRef] [Green Version]
- Nie, D.; Rashid, S.; Akdemir, A.O.; Baleanu, D.; Liu, J.B. On some new weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications. Mathematics 2019, 7, 727. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Sokół, J.; Srivastava, H.M.; Malik, S.N. Some reciprocal classes of close-to-convex and quasi-convex analytic functions. Mathematics 2019, 7, 309. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Hussain, S.; Latif, M.A.; Shahzadi, G. Estimates for certain integral inequalities on (p, q)-calculus. Panjab Univ. J. Math. 2020, 52, 1–4. [Google Scholar]
- Gordji, M.E.; Delavar, M.R.; Sen, M.D.L. On ϕ-convex functions. J. Math. Inequal. 2016, 10, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, M. On strong quasiconvex functions and boundedness of level sets. Optimization 1989, 20, 163–165. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalsoom, H.; Vivas-Cortez, M.; Idrees, M.; Agarwal, P. New Parameterized Inequalities for η-Quasiconvex Functions via (p, q)-Calculus. Entropy 2021, 23, 1523. https://doi.org/10.3390/e23111523
Kalsoom H, Vivas-Cortez M, Idrees M, Agarwal P. New Parameterized Inequalities for η-Quasiconvex Functions via (p, q)-Calculus. Entropy. 2021; 23(11):1523. https://doi.org/10.3390/e23111523
Chicago/Turabian StyleKalsoom, Humaira, Miguel Vivas-Cortez, Muhammad Idrees, and Praveen Agarwal. 2021. "New Parameterized Inequalities for η-Quasiconvex Functions via (p, q)-Calculus" Entropy 23, no. 11: 1523. https://doi.org/10.3390/e23111523