Free Space Measurement Device Independent Quantum Key Distribution with Modulating Retro-Reflectors under Correlated Turbulent Channel
<p>Schematic Diagram of the MDI-QKD with MRR. IM: Intensity Modulator; MRR: Modulating Retro-Reflectors; BSM: Bell State Measurement; BS: Beam Splitters.</p> "> Figure 2
<p>The schematic diagram of the MDI-QKD with MRR.</p> "> Figure 3
<p>Key rates and QBER versus channel loss in the two different distributions. For a comparison, the fading correlation coefficient <math display="inline"><semantics> <mrow> <mtext> </mtext> <msub> <mi>ρ</mi> <mi mathvariant="normal">I</mi> </msub> <mtext> </mtext> </mrow> </semantics></math> ranges from 0 to 1, and the turbulence intensity in the forward-pass <math display="inline"><semantics> <mrow> <mtext> </mtext> <msub> <mi>σ</mi> <mn>1</mn> </msub> <mtext> </mtext> </mrow> </semantics></math> (the backward-pass <math display="inline"><semantics> <mrow> <mtext> </mtext> <msub> <mi>σ</mi> <mn>2</mn> </msub> </mrow> </semantics></math>) are fixed at 0.3.</p> "> Figure 4
<p>Key rates and QBER versus channel loss in the two different weak turbulence cases. The fading correlation coefficient <math display="inline"><semantics> <mrow> <mtext> </mtext> <msub> <mi>ρ</mi> <mi>I</mi> </msub> <mtext> </mtext> </mrow> </semantics></math> ranges from 0 to 0.9. The two different values set for the turbulence intensity <math display="inline"><semantics> <mrow> <mtext> </mtext> <msub> <mi>σ</mi> <mn>1</mn> </msub> <mtext> </mtext> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mtext> </mtext> <msub> <mi>σ</mi> <mn>2</mn> </msub> <mtext> </mtext> </mrow> </semantics></math> as {0.4, 0.2} and {0.4, 1.2} were presented in our simulation. When the double-pass channel parameters <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mn>2</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>2</mn> </msub> </mrow> </semantics></math> are fixed, the performance is impaired by the fading correlation coefficient <math display="inline"><semantics> <mrow> <mtext> </mtext> <msub> <mi>ρ</mi> <mi mathvariant="normal">I</mi> </msub> </mrow> </semantics></math> and deteriorating with increasing <math display="inline"><semantics> <mrow> <mtext> </mtext> <msub> <mi>ρ</mi> <mi mathvariant="normal">I</mi> </msub> </mrow> </semantics></math>. When the fading correlation coefficient <math display="inline"><semantics> <mrow> <mtext> </mtext> <msub> <mi>ρ</mi> <mi mathvariant="normal">I</mi> </msub> </mrow> </semantics></math> is fixed, the key rates of our scheme increase with the decrease of the turbulence intensity <math display="inline"><semantics> <mrow> <mtext> </mtext> <msub> <mi>σ</mi> <mn>2</mn> </msub> <mtext> </mtext> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. The Concept of the Free-Space MDI-QKD with Modulating Retro-Reflectors
3. The Framework for the Key Rate Estimation of MRR-MDI-QKD in a Turbulent Channel
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Security Analysis
References
- Lo, H.K.; Curty, M.; Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 2012, 108, 130503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braunstein, S.L.; Pirandola, S. Side-Channel-Free Quantum Key Distribution. Phys. Rev. Lett. 2012, 108, 130502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubenok, A.; Slater, J.A.; Chan, P.; Lucio-Martinez, I.; Tittel, W. Real-World Two-Photon Interference and Proof-of-Principle Quantum Key Distribution Immune to Detector Attacks. Phys. Rev. Lett. 2013, 111, 130501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.-B. Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography. Phys. Rev. Lett. 2005, 94, 230503. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, T.F.; Vitoreti, D.; Xavier, G.; Amaral, G.; Temporão, G.P.; Von Der Weid, J.P. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 2013, 88, 052303. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, T.-Y.; Wang, L.-J.; Liang, H.; Shentu, G.-L.; Wang, J.; Cui, K.; Yin, H.-L.; Liu, N.-L.; Li, L.; et al. Experimental Measurement-Device-Independent Quantum Key Distribution. Phys. Rev. Lett. 2013, 111, 130502. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.-L.; Chen, T.-Y.; Yu, Z.-W.; Liu, H.; You, L.; Zhou, Y.-H.; Chen, S.-J.; Mao, Y.; Huang, M.-Q.; Zhang, W.-J.; et al. Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. Phys. Rev. Lett. 2016, 117, 190501. [Google Scholar] [CrossRef]
- Wang, X.-B. Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 2013, 87, 012320. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.-H.; Yu, Z.-W.; Wang, X.-B. Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 2016, 93, 042324. [Google Scholar] [CrossRef] [Green Version]
- Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Wallden, P. Advances in quantum cryptography. Adv. Opt. Photonics 2020, 12, 1012–1236. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Li, Y.-H.; Yang, K.-X.; Jiang, Y.-F.; Li, S.-L.; Hu, X.-L.; Abulizi, M.; Li, C.-L.; Zhang, W.; Sun, Q.-C.; et al. Long-Distance Free-Space Measurement-Device-Independent Quantum Key Distribution. Phys. Rev. Lett. 2020, 125, 260503. [Google Scholar] [CrossRef]
- Wang, X.; Dong, C.; Zhao, S.; Liu, Y.; Liu, X.; Zhu, H. Feasibility of space-based measurement-device-independent quantum key distribution. New, J. Phys. 2021, 23, 045001. [Google Scholar] [CrossRef]
- Tarantino, S.; Da Lio, B.; Cozzolino, D.; Bacco, D. Feasibility study of Quantum Communications in Aquatic Scenarios. Optik 2020, 216, 164639. [Google Scholar] [CrossRef]
- Chen, Y.-A.; Zhang, Q.; Chen, T.-Y.; Cai, W.-Q.; Liao, S.-K.; Zhang, J.; Chen, K.; Yin, J.; Ren, J.-G.; Chen, Z.; et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 2021, 589, 214–219. [Google Scholar] [CrossRef]
- Born, B.; Hristovski, I.R.; Geoffroy-Gagnon, S.; Holzman, J.F. All-optical retro-modulation for free-space optical communication. Opt. Express 2018, 26, 5031–5042. [Google Scholar] [CrossRef]
- Rabinovich, W.S.; Mahon, R.; Ferraro, M.S.; Goetz, P.G.; Bashkansky, M.; Freeman, R.E.; Reintjes, J.; Murphy, J.L. Free space quantum key distribution using modulating retro-reflectors. Opt. Express 2018, 26, 11331–11351. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.W.; Li, C.; Li, Y.J.; Geng, H.J.; Bi, M.H.; Fan, B.; Wang, T.S. Channel Modeling and performance analysis of modulating retro reflector FSO systems under weak turbulence conditions. IEEE Photonics J. 2017, 9, 1–10. [Google Scholar]
- Choi, Y.; Kwon, O.; Woo, M.; Oh, K.; Han, S.-W.; Kim, Y.-S.; Moon, S. Plug-and-play measurement-device-independent quantum key distribution. Phys. Rev. A 2016, 93, 032319. [Google Scholar] [CrossRef] [Green Version]
- Trinh, P.V.; Pham, T.V.; Nguyen, H.V.; Ng, S.X.; Pham, A. Performance of Free-Space QKD Systems Using SIM/BPSK and Dual-Threshold/Direct-Detection. In Proceedings of the 2016 IEEE Globecom Workshops, Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Trinh, P.V.; Pham, A.; Dang, N.T.; Nguyen, H.; Ng, S.X.; Phama, A.T. Design and Security Analysis of Quantum Key Distribution Protocol Over Free-Space Optics Using Dual-Threshold Direct-Detection Receiver. IEEE Access 2018, 6, 4159–4175. [Google Scholar] [CrossRef]
- Abadi, M.M.; Ghassemlooy, Z.; Zvanovec, S.; Bhatnagar, M.R.; Khalighi, M.A.; Wu, Y. Impact of link parameters and channel correlation on the performance of FSO systems with the differential signaling technique. IEEE J. Opt. Commun. Netw. 2017, 9, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Minott, P.O. Design of Retrodirector Arrays for Laser Ranging of Satellite; NASA TM-X-723-74-122; goddard Space Flight Center: Greenbelt, MD, USA, 1974; pp. 1–21. [Google Scholar]
- You, S.; Yang, G.; Bi, M.; Wei, Y.; Lu, Y.; Zhou, X. Wave-optics simulation of the channel fading in modulating retro-reflector free-space optical link. In Proceedings of the 2015 International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 15–17 October 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Zhu, Z.-D.; Chen, D.; Zhao, S.-H.; Zhang, Q.-H.; Xi, J.-H. Real-time selection for free-space measurement device independent quantum key distribution. Quantum Inf. Process. 2018, 18, 33. [Google Scholar] [CrossRef]
- Tang, G.-Z.; Sun, S.-H.; Xu, F.; Chen, H.; Li, C.-Y.; Liang, L.-M. Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution. Phys. Rev. A 2016, 94, 032326. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Tamaki, K.; Curty, M. Measurement-device-independent quantum key distribution with leaky sources. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Liao, Q.; Wang, Y.; Huang, D.; Guo, Y. Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution. Opt. Express 2018, 26, 19907–19920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Symbol | Name | Value |
---|---|---|
detection efficiency | 50% | |
error probability of dark counts | 0.5 | |
error probability of optical misalignment | 0.015 | |
error-correction efficiency | 1.16 | |
background rate | 3 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, W.; Wu, T.; Guo, C.; Zhang, Y.; Zhao, S.; Dong, C. Free Space Measurement Device Independent Quantum Key Distribution with Modulating Retro-Reflectors under Correlated Turbulent Channel. Entropy 2021, 23, 1299. https://doi.org/10.3390/e23101299
Wang X, Liu W, Wu T, Guo C, Zhang Y, Zhao S, Dong C. Free Space Measurement Device Independent Quantum Key Distribution with Modulating Retro-Reflectors under Correlated Turbulent Channel. Entropy. 2021; 23(10):1299. https://doi.org/10.3390/e23101299
Chicago/Turabian StyleWang, Xingyu, Wei Liu, Tianyi Wu, Chang Guo, Yijun Zhang, Shanghong Zhao, and Chen Dong. 2021. "Free Space Measurement Device Independent Quantum Key Distribution with Modulating Retro-Reflectors under Correlated Turbulent Channel" Entropy 23, no. 10: 1299. https://doi.org/10.3390/e23101299