Quantum Photovoltaic Cells Driven by Photon Pulses
<p>A two-level system with energy levels <math display="inline"><semantics> <msub> <mi>E</mi> <mn>0</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>E</mi> <mn>1</mn> </msub> </semantics></math> in contact with a cold thermal bath at <math display="inline"><semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics></math> is driven by Gaussian photon pulses serving as an energy source in our work.</p> "> Figure 2
<p>(<b>a</b>) The density matrix elements of the two-level system and the sequence of Gaussian photon pulses <math display="inline"><semantics> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> are plotted over time. (<b>b</b>) The rate of energy change <math display="inline"><semantics> <mfrac> <mrow> <mi>d</mi> <mi>E</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </semantics></math>, the power <math display="inline"><semantics> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, and the heat current <math display="inline"><semantics> <mrow> <mi>J</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> are calculated as functions of time. (<b>c</b>) The energy <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, the work <math display="inline"><semantics> <mrow> <mi>W</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, the heat transfer <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, and the system entropy <math display="inline"><semantics> <mrow> <mi>S</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> are plotted as functions of time. (<b>d</b>) The rate of system entropy change <math display="inline"><semantics> <mfrac> <mrow> <mi>d</mi> <mi>S</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </semantics></math> and the entropy production <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> are plotted over time. The parameters are taken as <math display="inline"><semantics> <mrow> <mo>〈</mo> <mi>n</mi> <mo>〉</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msub> <mi>ω</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>/</mo> <mn>4</mn> <mi>π</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>ℏ</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mspace width="0.277778em"/> <mi>eV</mi> </mrow> </semantics></math>.</p> "> Figure 3
<p>(<b>a</b>) The density matrix elements of the two-level system and the sequence of Gaussian photon pulses <math display="inline"><semantics> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> are plotted over time. (<b>b</b>) The rate of energy change <math display="inline"><semantics> <mfrac> <mrow> <mi>d</mi> <mi>E</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </semantics></math>, the power <math display="inline"><semantics> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, and the heat current <math display="inline"><semantics> <mrow> <mi>J</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> are plotted as functions of time. (<b>c</b>) The energy <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, the work <math display="inline"><semantics> <mrow> <mi>W</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, the heat transfer <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, and the system entropy <math display="inline"><semantics> <mrow> <mi>S</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> are calculated as functions of time. (<b>d</b>) The rate of system entropy change <math display="inline"><semantics> <mfrac> <mrow> <mi>d</mi> <mi>S</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </semantics></math> and the entropy production <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> are shown over time. The parameters are <math display="inline"><semantics> <mrow> <mo>〈</mo> <mi>n</mi> <mo>〉</mo> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msub> <mi>ω</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>/</mo> <mn>4</mn> <mi>π</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>ℏ</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mspace width="0.277778em"/> <mi>eV</mi> </mrow> </semantics></math>.</p> "> Figure 4
<p>When a Gaussian photon pulse is overlapped with the subsequent Gaussian photon pulse and the interval between them is regular, (<b>a</b>) the density matrix elements of the two-level system, (<b>b</b>) the rate of energy change <math display="inline"><semantics> <mfrac> <mrow> <mi>d</mi> <mi>E</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </semantics></math>, the power <math display="inline"><semantics> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, the heat current <math display="inline"><semantics> <mrow> <mi>J</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, (<b>c</b>) energy <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, work <math display="inline"><semantics> <mrow> <mi>W</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, heat <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> system entropy <math display="inline"><semantics> <mrow> <mi>S</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, (<b>d</b>) the rate of system entropy change <math display="inline"><semantics> <mfrac> <mrow> <mi>d</mi> <mi>S</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </semantics></math> and the entropy production <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> are plotted as a function of time. The parameters are taken as <math display="inline"><semantics> <mrow> <mo>〈</mo> <mi>n</mi> <mo>〉</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msub> <mi>ω</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>/</mo> <mn>4</mn> <mi>π</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>ℏ</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mspace width="0.277778em"/> <mi>eV</mi> </mrow> </semantics></math>.</p> "> Figure 5
<p>When an irregularly spaced sequence of photon pulses is applied, (<b>a</b>) the density matrix elements of the two-level system and the sequence of Gaussian photon pulses <math display="inline"><semantics> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, (<b>b</b>) the rate of energy change <math display="inline"><semantics> <mfrac> <mrow> <mi>d</mi> <mi>E</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </semantics></math>, the power <math display="inline"><semantics> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, and the heat current <math display="inline"><semantics> <mrow> <mi>J</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, (<b>c</b>) the energy <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, work <math display="inline"><semantics> <mrow> <mi>W</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, and heat <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, and the system entropy <math display="inline"><semantics> <mrow> <mi>S</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, (<b>d</b>) the rate of system entropy change <math display="inline"><semantics> <mfrac> <mrow> <mi>d</mi> <mi>S</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </semantics></math> and the entropy production <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> are plotted as functions of time. Parameters: <math display="inline"><semantics> <mrow> <mo>〈</mo> <mi>n</mi> <mo>〉</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msub> <mi>ω</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>/</mo> <mn>4</mn> <mi>π</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>ℏ</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mrow> <mspace width="0.277778em"/> <mi>eV</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 6
<p>Schematic diagram of a donor-acceptor photocell. <math display="inline"><semantics> <msub> <mi>γ</mi> <mn>01</mn> </msub> </semantics></math> is the spontaneous decay due to the coupling with the cold thermal bath. <math display="inline"><semantics> <msub> <mi>γ</mi> <mn>21</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>γ</mi> <mn>03</mn> </msub> </semantics></math> are the transfer rate between the donor and the acceptor. <math display="inline"><semantics> <mo>Γ</mo> </semantics></math> stands for the external load or electrical resistance.</p> "> Figure 7
<p>(<b>a</b>) The diagonal matrix elements of the density operator of the photocell and the pulse profiles are plotted as a function of time. (<b>b</b>) The changes in the energy of the donor and acceptor <math display="inline"><semantics> <mrow> <msub> <mrow> <mo stretchy="false">(</mo> <mrow> <mi>d</mi> <mi>E</mi> </mrow> <mo>/</mo> <mrow> <mi>d</mi> <mi>t</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mi>D</mi> </msub> <mo>=</mo> <msubsup> <mi>E</mi> <mi>D</mi> <mo>′</mo> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mo stretchy="false">(</mo> <mrow> <mi>d</mi> <mi>E</mi> </mrow> <mo>/</mo> <mrow> <mi>d</mi> <mi>t</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mi>A</mi> </msub> <mo>=</mo> <msubsup> <mi>E</mi> <mi>A</mi> <mo>′</mo> </msubsup> </mrow> </semantics></math>, the power delivered to the donor <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mi>D</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> by the photon pulses, the power output <math display="inline"><semantics> <msub> <mi>P</mi> <mi>out</mi> </msub> </semantics></math>, and the heat currents of the donor and acceptor <math display="inline"><semantics> <msub> <mi>J</mi> <mi>D</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>J</mi> <mi>A</mi> </msub> </semantics></math> are plotted as a function of time. (<b>c</b>) The entropy of the quantum photocell, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, the entropy of the donor, <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>D</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>, and the entropy of the acceptor, <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>A</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>, are calculated as a function of time. (<b>d</b>) The current <math display="inline"><semantics> <mrow> <mi>I</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, the voltage <math display="inline"><semantics> <mrow> <mi>V</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, and the efficiency <math display="inline"><semantics> <mi>η</mi> </semantics></math> are plotted as a function of time. Parameters: <math display="inline"><semantics> <mrow> <mo>〈</mo> <mi>n</mi> <mo>〉</mo> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mn>12</mn> </msub> <mo>=</mo> <msub> <mi>γ</mi> <mn>03</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msub> <mi>ω</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mn>01</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msub> <mi>ω</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Γ</mo> <mo>=</mo> <mn>0.1</mn> <msub> <mi>ω</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>/</mo> <mn>4</mn> <mi>π</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>ℏ</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>E</mi> <mn>1</mn> </msub> <mo>−</mo> <msub> <mi>E</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1.8</mn> <mspace width="0.277778em"/> <mi>eV</mi> </mrow> </semantics></math>.</p> "> Figure 8
<p>(<b>a</b>) From discrete mode to (<b>b</b>) the continuous mode operation by changing the interval of the pulses. Parameters: <math display="inline"><semantics> <mrow> <mo>〈</mo> <mi>n</mi> <mo>〉</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mn>21</mn> </msub> <mo>=</mo> <msub> <mi>γ</mi> <mn>03</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> <msub> <mi>ω</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mn>01</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msub> <mi>ω</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>/</mo> <mn>4</mn> <mi>π</mi> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Quantum Thermodynamics of Open Quantum Systems
3. A Two-Level System Driven by Photon Pulses
4. Quantum Photocell Driven by Photon Pulses
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Shockley, W.; Queisser, H.J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Scully, M.O. Quantum Photocell: Using Quantum Coherence to Reduce Radiative Recombination and Increase Efficiency. Phys. Rev. Lett. 2010, 104, 207701. [Google Scholar] [CrossRef]
- Scully, M.O.; Chapin, K.R.; Dorfman, K.E.; Kim, M.B.; Svidzinsky, A. Quantum heat engine power can be increased by noise-induced coherence. Proc. Natl. Acad. Sci. USA 2011, 108, 15097–15100. [Google Scholar] [CrossRef] [Green Version]
- Svidzinsky, A.A.; Dorfman, K.E.; Scully, M.O. Enhancing photovoltaic power by Fano-induced coherence. Phys. Rev. A 2011, 84, 053818. [Google Scholar] [CrossRef] [Green Version]
- Creatore, C.; Parker, M.A.; Emmott, S.; Chin, A.W. Efficient Biologically Inspired Photocell Enhanced by Delocalized Quantum States. Phys. Rev. Lett. 2013, 111, 253601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Oh, S.; Alharbi, F.H.; Engel, G.S.; Kais, S. Delocalized quantum states enhance photocell efficiency. Phys. Chem. Chem. Phys. 2015, 17, 5743–5750. [Google Scholar] [CrossRef] [Green Version]
- Fruchtman, A.; Gómez-Bombarelli, R.; Lovett, B.W.; Gauger, E.M. Photocell Optimization Using Dark State Protection. Phys. Rev. Lett. 2016, 117, 203603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, K.D.B.; Lovett, B.W.; Gauger, E.M. Quantum-Enhanced Capture of Photons Using Optical Ratchet States. J. Phys. Chem. C 2017, 121, 20714–20719. [Google Scholar] [CrossRef] [Green Version]
- Dorfman, K.E.; Voronine, D.V.; Mukamel, S.; Scully, M.O. Photosynthetic reaction center as a quantum heat engine. Proc. Natl. Acad. Sci. USA 2013, 110, 2746–2751. [Google Scholar] [CrossRef] [Green Version]
- Killoran, N.; Huelga, S.F.; Plenio, M.B. Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture. J. Chem. Phys. 2015, 143, 155102. [Google Scholar] [CrossRef]
- Yamada, Y.; Yamaji, Y.; Imada, M. Exciton Lifetime Paradoxically Enhanced by Dissipation and Decoherence: Toward Efficient Energy Conversion of a Solar Cell. Phys. Rev. Lett. 2015, 115, 197701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stones, R.; Hossein-Nejad, H.; van Grondelle, R.; Olaya-Castro, A. On the performance of a photosystem II reaction centre-based photocell. Chem. Sci. 2017, 8, 6871–6880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosloff, R.; Levy, A. Quantum Heat Engines and Refrigerators: Continuous Devices. Annu. Rev. Phys. Chem. 2014, 65, 365–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzdin, R.; Levy, A.; Kosloff, R. Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures. Phys. Rev. X 2015, 5, 031044. [Google Scholar] [CrossRef] [Green Version]
- Scovil, H.E.D.; Schulz-DuBois, E.O. Three-Level Masers as Heat Engines. Phys. Rev. Lett. 1959, 2, 262–263. [Google Scholar] [CrossRef]
- Oh, S. Efficiency and power enhancement of solar cells by dark states. Phys. Lett. A 2019, 383, 125857. [Google Scholar] [CrossRef]
- Tomasi, S.; Kassal, I. Classification of Coherent Enhancements of Light-Harvesting Processes. J. Phys. Chem. Lett. 2020, 11, 2348–2355. [Google Scholar] [CrossRef] [Green Version]
- Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976, 48, 119–130. [Google Scholar] [CrossRef]
- Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G. Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 1976, 17, 821–825. [Google Scholar] [CrossRef]
- Alicki, R.; Lendi, K. Quantum Dynamical Semigroup and Applications; Springer: Berlin, Germny, 1984. [Google Scholar]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Rivas, Á.; Huelga, S.F. Open Quantum Systems, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef] [Green Version]
- Spohn, H. Entropy production for quantum dynamical semigroups. J. Math. Phys. 1978, 19, 1227–1230. [Google Scholar] [CrossRef]
- Spohn, H.; Lebowitz, J.L. Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs. In Advances in Chemical Physics; Rice, S.A., Ed.; John Wiley & Sons, Ltd.: New York, NY, USA, 1978; Volume XXXVIII, pp. 109–142. [Google Scholar] [CrossRef]
- Alicki, R. The quantum open system as a model of the heat engine. J. Phys. Math. Gen. 1979, 12, L103–L107. [Google Scholar] [CrossRef]
- Das, S.; Khatri, S.; Siopsis, G.; Wilde, M.M. Fundamental limits on quantum dynamics based on entropy change. J. Math. Phys. 2018, 59, 012205. [Google Scholar] [CrossRef] [Green Version]
- Jaynes, E.T.; Cummings, F.W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 1963, 51, 89–109. [Google Scholar] [CrossRef] [Green Version]
- Orszag, M. Quantum Optics; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Loudon, R. The Quantum Theory of Light; Clarendon Press: Oxford, UK, 1973. [Google Scholar]
- Wang, Y.; Minář, J.C.V.; Sheridan, L.; Scarani, V. Efficient excitation of a two-level atom by a single photon in a propagating mode. Phys. Rev. A 2011, 83, 063842. [Google Scholar] [CrossRef] [Green Version]
- Chan, H.C.H.; Gamel, O.E.; Fleming, G.R.; Whaley, K.B. Single-photon absorption by single photosynthetic light-harvesting complexes. J. Phys. B Atomic Mol. Opt. Phys. 2018, 51, 054002. [Google Scholar] [CrossRef] [Green Version]
- Carmichael, H. An Open Systems Approach to Quantum Optics; Springer: Berlin, Germany, 1993. [Google Scholar]
- Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: New York, NY, USA, 1995. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Stefanatos, D. Optimal efficiency of a noisy quantum heat engine. Phys. Rev. E 2014, 90, 012119. [Google Scholar] [CrossRef] [Green Version]
- Alvarado Barrios, G.; Peña, F.J.; Albarrán-Arriagada, F.; Vargas, P.; Retamal, J.C. Quantum Mechanical Engine for the Quantum Rabi Model. Entropy 2018, 20, 767. [Google Scholar] [CrossRef] [Green Version]
- Peña, F.J.; Zambrano, D.; Negrete, O.; De Chiara, G.; Orellana, P.A.; Vargas, P. Quasistatic and quantum-adiabatic Otto engine for a two-dimensional material: The case of a graphene quantum dot. Phys. Rev. E 2020, 101, 012116. [Google Scholar] [CrossRef] [Green Version]
- Potočnik, A.; Bargerbos, A.; Schröder, F.A.Y.N.; Khan, S.A.; Collodo, M.C.; Gasparinetti, S.; Salathé, Y.; Creatore, C.; Eichler, C.; Türeci, H.E.; et al. Studying light-harvesting models with superconducting circuits. Nat. Commun. 2018, 9, 904. [Google Scholar] [CrossRef]
- Maslennikov, G.; Ding, S.; Hablützel, R.; Gan, J.; Roulet, A.; Nimmrichter, S.; Dai, J.; Scarani, V.; Matsukevich, D. Quantum absorption refrigerator with trapped ions. Nat. Commun. 2019, 10, 202. [Google Scholar] [CrossRef]
- Cherubim, C.; Brito, F.; Deffner, S. Non-Thermal Quantum Engine in Transmon Qubits. Entropy 2019, 21, 545. [Google Scholar] [CrossRef] [Green Version]
Energy gap of the two-level system | eV |
Energy gap of the donor of the quantum photocell | eV |
Energy gap of the acceptor of the quantum photocell | eV |
Weisskopf-Winger constant | |
Phonon decay constant | |
Photon number of a pulse | |
Temperature of the cold bath | = 300 K |
Width of a Gaussian pulse |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.; Park, J.J.; Nha, H. Quantum Photovoltaic Cells Driven by Photon Pulses. Entropy 2020, 22, 693. https://doi.org/10.3390/e22060693
Oh S, Park JJ, Nha H. Quantum Photovoltaic Cells Driven by Photon Pulses. Entropy. 2020; 22(6):693. https://doi.org/10.3390/e22060693
Chicago/Turabian StyleOh, Sangchul, Jung Jun Park, and Hyunchul Nha. 2020. "Quantum Photovoltaic Cells Driven by Photon Pulses" Entropy 22, no. 6: 693. https://doi.org/10.3390/e22060693
APA StyleOh, S., Park, J. J., & Nha, H. (2020). Quantum Photovoltaic Cells Driven by Photon Pulses. Entropy, 22(6), 693. https://doi.org/10.3390/e22060693