Power-Law Distributions of Dynamic Cascade Failures in Power-Grid Models
<p>Moment of inertia for a 400 MW node, depending on the proportion of locally generated power and the share of converter-based generation units.</p> "> Figure 2
<p>The topography of Hungarian transmission (750 kV—purple, 400 kV—red, 220 kV—green) and sub-transmission (120 kV—blue) networks.</p> "> Figure 3
<p>The topology of the HU-HV grid. Note, that in transmission networks unidirectional lines may occur, but here double lines were also modeled as single connections.</p> "> Figure 4
<p>Adjacency matrix of of the HU-HV grid. Circles mark nodes <span class="html-italic">i</span> and <span class="html-italic">j</span> connected.</p> "> Figure 5
<p>Adjacency matrix of of the US-HV grid. Dots mark nodes <span class="html-italic">i</span> and <span class="html-italic">j</span> connected.</p> "> Figure 6
<p>Hysteresis of the Kuramoto order parameter on the 2D square lattice as the function of threshold at <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>. Upper branch bullets corresponds to synchronized initial state, while lower branch boxes to random initialization of <math display="inline"><semantics> <msub> <mi>θ</mi> <mi>i</mi> </msub> </semantics></math>.</p> "> Figure 7
<p>Probability distributions of line failures for different failure thresholds (<span class="html-italic">T</span>), shown by the legends, at <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>. Closed symbols: <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> </mrow> </semantics></math>, open symbols: <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>4</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> </mrow> </semantics></math>. The dashed line shows a PL fit for the <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math> data, corresponding to the singular <math display="inline"><semantics> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>N</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>≃</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>N</mi> <mi>f</mi> </msub> </mrow> </semantics></math> case, lying in the disordered phase.</p> "> Figure 8
<p>Probability distribution of line failures for different thresholds at <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math> shown in the legends in case of the US power-grid. Lines corresponds to Gaussian distributed <math display="inline"><semantics> <msubsup> <mi>ω</mi> <mi>i</mi> <mn>0</mn> </msubsup> </semantics></math>-s, while star symbols to the exponentially distributed self-frequencies in the case of <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>. Dashed lines show power-law fits for the scaling region, being determined by visual inspection. The inset shows <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>→</mo> <mo>∞</mo> <mo>)</mo> </mrow> </semantics></math> as the function of time, for <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>30</mn> <mo>,</mo> <mn>40</mn> <mo>,</mo> <mn>70</mn> </mrow> </semantics></math> (bottom to top curves).</p> "> Figure 9
<p>Steady state order parameter as the function of <span class="html-italic">K</span> for <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> in case of the US-HV. Black bullets are for Gaussian, while red boxes are for exponential tailed <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>(</mo> <msubsup> <mi>ω</mi> <mi>i</mi> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> </semantics></math> self-frequency distributions. The two branches of Gaussian correspond to ordered and disordered initial states representing a hysteresis loop, closing at <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>></mo> <mn>400</mn> </mrow> </semantics></math>. The inset shows the fluctuations, <math display="inline"><semantics> <msub> <mi>σ</mi> <mi>R</mi> </msub> </semantics></math> of the same.</p> "> Figure 10
<p>Kuramoto order parameter in the HU-HV power-grid as the function of threshold, bullets: Gaussian <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>(</mo> <msubsup> <mi>ω</mi> <mi>i</mi> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> </semantics></math>, stars: exponential tailed fluctuations. The upper inset shows <math display="inline"><semantics> <msub> <mi>σ</mi> <mi>R</mi> </msub> </semantics></math> of the same. The lower inset shows the time dependence in case of <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>(</mo> <msubsup> <mi>ω</mi> <mi>i</mi> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0.35</mn> <mo>,</mo> <mn>0.38</mn> <mo>,</mo> <mn>0.40</mn> <mo>,</mo> <mn>0.42</mn> <mo>,</mo> <mn>0.43</mn> <mo>,</mo> <mn>0.45</mn> </mrow> </semantics></math> (bottom to top curves).</p> "> Figure 11
<p>Probability distribution of line failures for different thresholds, as shown in the legends in case of the HU-HV power-grid. The dashed line shows a power-law fit for scaling region of the <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0.43</mn> </mrow> </semantics></math> results.</p> "> Figure 12
<p>The same as in <a href="#entropy-22-00666-f011" class="html-fig">Figure 11</a>, in the case of exponential tailed self-frequency fluctuations. The green dashed line shows a power-law fit for the scaling region of the <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math> threshold result shifted up for better visibility. For comparison, we also show empirical distributions for the lost time (black dots) and lost energy (orange dashed line) obtained from the MAVIR database.</p> "> Figure 13
<p>Effect of the instantaneous feedback by increasing <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>8</mn> </mrow> </semantics></math> in the HU-HV power-grid with heterogeneous inertia <math display="inline"><semantics> <msub> <mi>H</mi> <mi>i</mi> </msub> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0.43</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Models and Methods
- dissipation factor is chosen to be equal to 0.4/[1/s], which value will be used in this paper as well
- in real power systems, the i-th node has connection both to generators and loads, thus parameter of the equation can be written as
Description and Analysis of the Power-Grids
3. Simulation Results
3.1. The Two-Dimensional Square Lattice
3.2. The US-HV Power-Grid
3.3. The Hungarian HV Power-Grid
3.4. Instantaneous Feedback Control On the HU-HV Power-Grid
3.5. Summary of Simulations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Acebrón, J.; Bonilla, L.; Vicente, C.; Ritort, F.; Spigler, R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 2005, 77, 137–185. [Google Scholar] [CrossRef] [Green Version]
- Arenas, A.; Díaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C. Synchronization in complex networks. Phys. Rep. 2008, 469, 93–153. [Google Scholar] [CrossRef] [Green Version]
- Ódor, G.; Hartmann, B. Heterogeneity effects in power grid network models. Phys. Rev. E 2018, 98, 022305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, G.; Donalek, P.; Farmer, R.; Hatziargyriou, N.; Kamwa, I.; Kundur, P.; Martins, N.; Paserba, J.; Pourbeik, P.; Sanchez-Gasca, J.; et al. Causes of the 2003 major grid blackouts in North America Europe, and recommended means to improve system dynamic performance. IEEE Trans. Power Syst. 2005, 20, 1922–1928. [Google Scholar] [CrossRef]
- Abedi, A.; Gaudard, L.; Romerio, F. Review of major approaches to analyze vulnerability in power system. Reliab. Eng. Syst. Saf. 2019, 183, 153–172. [Google Scholar] [CrossRef]
- Carreras, B.A.; Newman, D.E.; Dobson, I.; Poole, A.B. Evidence for self-organized criticality in a time series of electric power system blackouts. IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51, 1733–1740. [Google Scholar] [CrossRef]
- Dobson, I.; Carreras, B.A.; Lynch, V.E.; Newman, D.E. Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization. Chaos Interdiscip. J. Nonlinear Sci. 2007, 17, 026103. [Google Scholar] [CrossRef] [PubMed]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 1987, 59, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Casals, M.; Solé, R. Analysis of major failures in Europe’s power grid. Int. J. Electr. Power Energy Syst. 2011, 33, 805–808. [Google Scholar] [CrossRef] [Green Version]
- Casals, M.R. Topological Complexity of the Electricity Transmission Network: Implications in the Sustainability Paradigm. Ph.D. Thesis, UPC Barcelona, Barcelona, Spain, 2009. [Google Scholar]
- Casals, M.R.; Corominas, B. Assessing European power grid reliability by means of topological measures. WIT Trans. Ecol. Environ. 2009, 121, 527–537. [Google Scholar]
- Ódor, G. Slow, bursty dynamics as a consequence of quenched network topologies. Phys. Rev. E 2004, 89, 042102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filatrella, G.; Nielsen, A.H.; Pedersen, N.F. Analysis of a power grid using a Kuramoto-like model. Europhys. J. B 2008, 61, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Carareto, R.; Baptista, M.S.; Grebogi, C. Natural synchronization in power-grids with anti-correlated units. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 1035–1046. [Google Scholar] [CrossRef]
- Choi, Y.P.; Ha, S.Y.; Yun, S.B. Complete synchronization of Kuramoto oscillators with finite inertia. Phys. D Nonlinear Phenom. 2011, 240, 32–44. [Google Scholar] [CrossRef]
- Choi, Y.; Li, Z.; Ha, S.; Xue, X.; Yun, S. Complete entrainment of Kuramoto oscillators with inertia on networks via gradient-like flow. J. Differ. Equ. 2014, 257, 2591–2621. [Google Scholar] [CrossRef]
- Dörfler, F.; Bullo, F. Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators. In Proceedings of the 2010 American Control Conference, Baltimore, MD, USA, 30 June–2 July 2010; pp. 930–937. [Google Scholar]
- Dörfler, F.; Bullo, F. Synchronization in complex networks of phase oscillators: A survey. Automatica 2014, 50, 1539–1564. [Google Scholar] [CrossRef] [Green Version]
- Frasca, M.; Fortuna, L.; Fiore, A.S.; Latora, V. Analysis of the Italian power grid based on a Kuramoto-like model. In Proceedings of the PHYSCON 2011, Leon, Spain, 5–8 September 2011. [Google Scholar]
- Olmi, S.; Navas, A.; Boccaletti, S.; Torcini, A. Hysteretic transitions in the Kuramoto model with inertia. Phys. Rev. E 2014, 90, 042905. [Google Scholar] [CrossRef] [Green Version]
- Pinto, R.S.; Saa, A. Synchrony-optimized networks of Kuramoto oscillators with inertia. Phys. A Stat. Mech. Its Appl. 2016, 463, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Schmietendorf, K.; Peinke, J.; Friedrich, R.; Kamps, O. Self-organized synchronization and voltage stability in networks of synchronous machines. Eur. Phys. J. Spec. Top. 2014, 233, 2577–2592. [Google Scholar] [CrossRef] [Green Version]
- Grzybowski, J.M.V.; Macau, E.E.N.; Yoneyama, T. On synchronization in power-grids modelled as networks of second-order Kuramoto oscillators. Chaos Interdiscip. J. Nonlinear Sci. 2016, 26, 113113. [Google Scholar] [CrossRef]
- Taher, H.; Olmi, S.; Schöll, E. Enhancing power grid synchronization and stability through time-delayed feedback control. Phys. Rev. E 2019, 100, 062306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Tang, Y.; He, H.; Sun, Y. Cascading Failure Analysis With DC Power Flow Model and Transient Stability Analysis. IEEE Trans. Power Syst. 2015, 30, 285–297. [Google Scholar] [CrossRef]
- Ouyang, M. Comparisons of purely topological model, betweenness based model and direct current power flow model to analyze power grid vulnerability. Chaos Interdiscip. J. Nonlinear Sci. 2013, 23, 023114. [Google Scholar] [CrossRef]
- LaRocca, S.; Johansson, J.; Hassel, H.; Guikema, S. Topological Performance Measures as Surrogates for Physical Flow Models for Risk and Vulnerability Analysis for Electric Power Systems. Risk Anal. 2015, 35, 608–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koç, Y.; Warnier, M.; Mieghem, P.V.; Kooij, R.E.; Brazier, F.M. The impact of the topology on cascading failures in a power grid model. Phys. A Stat. Mech. Its Appl. 2014, 402, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence; Springer Series in Synergetics; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Hong, H.; Chaté, H.; Park, H.; Tang, L.H. Entrainment transition in populations of random frequency oscillators. Phys. Rev. Lett. 2007, 99, 184101. [Google Scholar] [CrossRef] [Green Version]
- Vojta, T. Rare region effects at classical, quantum and nonequilibrium phase transitions. J. Phys. Math. Gen. 2006, 39, R143–R205. [Google Scholar] [CrossRef]
- Griffiths, R.B. Nonanalytic Behavior Above the Critical Point in a Random Ising Ferromagnet. Phys. Rev. Lett. 1969, 23, 17–19. [Google Scholar] [CrossRef]
- Villegas, P.; Moretti, P.; Muñoz, M. Frustrated hierarchical synchronization and emergent complexity in the human connectome network. Scientific Reports 2014, 4, 5990. [Google Scholar] [CrossRef] [Green Version]
- Villegas, P.; Hidalgo, J.; Moretti, P.; Muñoz, M. Complex synchronization patterns in the human connectome network. In Proceedings of ECCS 2014: European Conference on Complex Systems; Springer: Cham, Switzerland, 2016; pp. 69–80. [Google Scholar] [CrossRef] [Green Version]
- Millán, A.; Torres, J.; Bianconi, G. Complex Network Geometry and Frustrated Synchronization. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Ódor, G.; Kelling, J. Critical synchronization dynamics of the Kuramoto model on connectome and small world graphs. Sci. Rep. 2019, 9, 19621. [Google Scholar] [CrossRef] [PubMed]
- Ódor, G.; Kelling, J.; Deco, G. The effect of noise on the synchronization dynamics of the Kuramoto model on a large human connectome graph. J. Neurocomput. 2019, arXiv:1912.06018. [Google Scholar]
- Schäffer, B.; Witthaut, D.; Timme, M.; Latora, V. Dynamically induced cascading failures in power grids. Nat. Commun. 2018, 9, 1975. [Google Scholar] [CrossRef] [PubMed]
- Anvari, M.; Lohmann, G.; Wäter, M.; Milan, P.; Lorenz, E.; Heinemann, D.; Tabar, M.R.R.; Peinke, J. Short term fluctuations of wind and solar power systems. New J. Phys. 2016, 18, 063027. [Google Scholar] [CrossRef]
- Grainger, J.J.; Stevenson, W.D. Power System Analysis; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Manson, S.; Zweigle, G.; Yedidi, V. Case study: An adaptive underfrequency load-shedding system. In Proceedings of the Industry Applications Society 60th Annual Petroleum and Chemical Industry Conference, London, UK, 16–18 April 2013; pp. 1–9. [Google Scholar]
- ENTSO-E. European Power System 2040—Completing the Map, The Ten-Year Network Development Plan 2018 System Needs Analysis; Technical Report; ENTSO-E: Brussels, Belgium, 2008. [Google Scholar]
- US Power Grid. Available online: http://konect.uni-koblenz.de/networks/opsahl-powergrid (accessed on 10 November 2017).
- Press, W.; Teukolsky, S.; Vetterling, W.; Flannery, B. Numerical Recipes 3rd Edition: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Newman, M. Networks: An Introduction; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- GEPHI Tool. Available online: https://gephi.org (accessed on 14 February 2016).
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ’small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Fronczak, A.; Fronczak, P.; Hołyst, J.A. Average path length in random networks. Phys. Rev. E 2004, 70, 056110. [Google Scholar] [CrossRef] [Green Version]
- Humphries, M.D.; Gurney, K. Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence. PLoS ONE 2008, 3, e0002051. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Goehring, L. Load dependence of power outage statistics. EPL (Europhys. Lett.) 2019, 126, 44002. [Google Scholar] [CrossRef] [Green Version]
Production Type | H [s] |
---|---|
Nuclear | 6 |
Combined cycle gas turbine | |
Single-shaft gas turbine | |
Large-scale hydro | 3 |
Diesel genset | 2 |
Converter-based units | 0 |
System | H [s] |
---|---|
Direct-on-line induction motor and compressor | 1 |
Direct-on-line induction motor and conveyor belt | 0.6 |
Direct-on-line synchronous motor and compressor | 1 |
Variable speed drive | 0 |
Lighting | 0 |
N | E | L | C | |||
---|---|---|---|---|---|---|
4194 | 6594 | 2.67 | 18.7 | 3.15 | 0.08 | 0.005 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ódor, G.; Hartmann, B. Power-Law Distributions of Dynamic Cascade Failures in Power-Grid Models. Entropy 2020, 22, 666. https://doi.org/10.3390/e22060666
Ódor G, Hartmann B. Power-Law Distributions of Dynamic Cascade Failures in Power-Grid Models. Entropy. 2020; 22(6):666. https://doi.org/10.3390/e22060666
Chicago/Turabian StyleÓdor, Géza, and Bálint Hartmann. 2020. "Power-Law Distributions of Dynamic Cascade Failures in Power-Grid Models" Entropy 22, no. 6: 666. https://doi.org/10.3390/e22060666