A Novel Image Encryption Approach Based on a Hyperchaotic System, Pixel-Level Filtering with Variable Kernels, and DNA-Level Diffusion
<p>Hyperchaotic attractors of the 4D Hyperchaotic system.</p> "> Figure 2
<p>An example of multi-shape dynamic filtering.</p> "> Figure 3
<p>The framework of the proposed PFDD (Pixel-level Filtering with kernels of variable shapes and parameters and DNA-level Diffusion).</p> "> Figure 4
<p>Sensitivity to security keys. From left to right, the images are Lena256, Airplane256, Aerial512, Finger512, Lena1024, Male1024, Male2048, and Airport2048.</p> "> Figure 5
<p>Images and histograms. From left to right, the images are plain images, the histograms of the plain images, the cipher images, and the histograms of the cipher images. In each histogram, the <span class="html-italic">x</span>-axis and the <span class="html-italic">y</span>-axis represent the pixel values and the total times the corresponding pixel occurs, respectively. From top to bottom, the names of the involved images are the same as the first column in <a href="#entropy-22-00005-t004" class="html-table">Table 4</a>.</p> ">
Abstract
:1. Introduction
2. Preliminaries
2.1. Hyperchaotic Systems
2.2. Filtering
2.3. DNA Computing
3. The Proposed Image Encryption Scheme
3.1. Generating Hyperchaotic Sequences
- Step 1:
- The 4D hyperchaotic system begins to iterate to generate long enough sequences for image encryption. In the i-th iteration, we can obtain four state values denoted as .
- Step 2:
- The sequences generated by the first iterations are discarded to eliminate the adverse effects.
- Step 3:
- When the iteration completes, a hyperchaotic sequence S can be obtained by concatenating all the as in Equation (2):
3.2. Pixel-Level Filtering with Variable Kernels
3.3. Global Bit-Level Permutation
3.4. DNA-Level Diffusion
- Step 1:
- C(1) = S(1) ⊗ (C0 ⊕ K(1)); C(H + 1) = S(H + 1) ⊗ (C(1) ⊕ K(H + 1))
- Step 2:
- for i = 2 → HC(i) = S(i) ⊗ (C(H + i − 1) ⊕ K(i))C(H + i) = S(H + i) ⊗ (C(i) ⊕ K(H + i))end for
- Step 3:
- D(1) = C(1) ⊗ (C(DL) ⊕ K(1)); D(H + 1) = C(H + 1) ⊗ (D(1) ⊕ K(H + 1))
- Step 4:
- for i = 2 → HD(i) = C(i) ⊗ (D(H + i − 1) ⊕ K(i))D(H + i) = C(H + i) ⊗ (D(i) ⊕ K(H + i))end for
3.5. PFDD: The Proposed Image Encryption Approach Using a Hyperchaotic System, Pixel-Level Filtering with Variable Kernels, and DNA-Level Diffusion
- Step 1:
- Step 2:
- For each pixel in the plain image, create a kernel whose shape and parameters are determined by the hyperchaotic sequence. Then, conduct a filtering operation on the pixel with the kernel. This is named pixel-level filtering with variable kernels, which results in a diffused image, as described in Section 3.2;
- Step 3:
- Transform the diffused image into a bit stream;
- Step 4:
- Perform the global bit permutation twice;
- Step 5:
- Encode the bit stream into a DNA-stream. Every pair of two adjacent bits is encoded into a DNA symbol through a DNA encoding rule determined by the hyperchaotic sequence;
- Step 6:
- Conduct DNA-level diffusion on the DNA-stream as described in Section 3.4;
- Step 7:
- Transform the DNA-level diffused plane into a pixel plane, i.e., the cipher image.
4. Experimental Results
4.1. Experimental Settings
4.2. Security Key Analysiss
4.2.1. Key Space
4.2.2. Sensitivity to Security Keys
4.3. Statistical Analysis
4.3.1. Information Entropy Analysis
4.3.2. Histogram Analysis
4.3.3. Correlation Analysis
4.4. Analysis of Resisting Differential Attacks
4.5. Plaintext and Ciphertext Attack Analysis
4.6. Running Time and Results on Large Images
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, G. A study of encryption algorithms (RSA, DES, 3DES and AES) for information security. Int. J. Comput. Appl. 2013, 67. [Google Scholar] [CrossRef]
- Chen, G.; Mao, Y.; Chui, C.K. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 2004, 21, 749–761. [Google Scholar] [CrossRef]
- Li, X.; Li, T.; Wu, J.; Xie, Z.; Shi, J. Joint image compression and encryption based on sparse Bayesian learning and bit-level 3D Arnold cat maps. PLoS ONE 2019, 14, e0224382. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Q.; Wei, X.; Zhou, C. A Summarization on Image Encryption. IETE Tech. Rev. 2010, 27, 503–510. [Google Scholar] [CrossRef]
- Li, X.; Xie, Z.; Wu, J.; Li, T. Image Encryption Based on Dynamic Filtering and Bit Cuboid Operations. Complexity 2019, 2019, 7485621. [Google Scholar] [CrossRef]
- Pareek, N.K.; Patidar, V.; Sud, K.K. Image encryption using chaotic logistic map. Image Vis. Comput. 2006, 24, 926–934. [Google Scholar] [CrossRef]
- Borujeni, S.E.; Eshghi, M. Chaotic Image Encryption Design Using Tompkins-Paige Algorithm. Math. Probl. Eng. 2009, 2009, 762652. [Google Scholar] [CrossRef] [Green Version]
- Sheela, S.J.; Suresh, K.V.; Tandur, D. Image encryption based on modified Henon map using hybrid chaotic shift transform. Multimed. Tools Appl. 2018, 77, 25223–25251. [Google Scholar] [CrossRef]
- Li, T.; Yang, M.; Wu, J.; Jing, X. A Novel Image Encryption Algorithm Based on a Fractional-Order Hyperchaotic System and DNA Computing. Complexity 2017, 2017, 9010251. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Shi, J.; Li, X.; Wu, J.; Pan, F. Image Encryption Based on Pixel-Level Diffusion with Dynamic Filtering and DNA-Level Permutation with 3D Latin Cubes. Entropy 2019, 21, 319. [Google Scholar] [CrossRef] [Green Version]
- Norouzi, B.; Mirzakuchaki, S. A fast color image encryption algorithm based on hyper-chaotic systems. Nonlinear Dyn. 2014, 78, 995–1015. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, X.; Yu, H.; Zhao, C.; Zhu, Z. An image encryption algorithm based on compound homogeneous hyper-chaotic system. Nonlinear Dyn. 2017, 89, 61–79. [Google Scholar] [CrossRef]
- Xue, H.W.; Du, J.; Li, S.L.; Ma, W.J. Region of interest encryption for color images based on a hyperchaotic system with three positive Lyapunov exponets. Opt. Laser Technol. 2018, 106, 506–516. [Google Scholar] [CrossRef]
- Chai, X.; Zheng, X.; Gan, Z.; Han, D.; Chen, Y. An image encryption algorithm based on chaotic system and compressive sensing. Signal Process. 2018, 148, 124–144. [Google Scholar] [CrossRef]
- Gong, L.; Qiu, K.; Deng, C.; Zhou, N. An optical image compression and encryption scheme based on compressive sensing and RSA algorithm. Opt. Lasers Eng. 2019, 121, 169–180. [Google Scholar] [CrossRef]
- Zhou, N.; Jiang, H.; Gong, L.; Xie, X. Double-image compression and encryption algorithm based on co-sparse representation and random pixel exchanging. Opt. Lasers Eng. 2018, 110, 72–79. [Google Scholar] [CrossRef]
- Zhu, S.; Zhu, C. A new image compression-encryption scheme based on compressive sensing and cyclic shift. Multimed. Tools Appl. 2019, 78, 20855–20875. [Google Scholar] [CrossRef]
- Tong, X.; Liu, Y.; Zhang, M.; Xu, H.; Wang, Z. An Image Encryption Scheme Based on Hyperchaotic Rabinovich and Exponential Chaos Maps. Entropy 2015, 17, 181–196. [Google Scholar] [CrossRef]
- Wang, Z.; Min, F.; Wang, E. A new hyperchaotic circuit with two memristors and its application in image encryption. AIP Adv. 2016, 6, 095316. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Hou, D.; Ren, H. Image Encryption Algorithm Based on Dynamic DNA Coding and Chen’s Hyperchaotic System. Math. Probl. Eng. 2016, 2016, 6408741. [Google Scholar] [CrossRef]
- Yu, S.; Zhou, N.; Gong, L.; Nie, Z. Optical image encryption algorithm based on phase-truncated short-time fractional Fourier transform and hyper-chaotic system. Opt. Lasers Eng. 2020, 124, 105816. [Google Scholar] [CrossRef]
- Sun, S.; Guo, Y.; Wu, R. A Novel Image Encryption Scheme Based on 7D Hyperchaotic System and Row-column Simultaneous Swapping. IEEE Access 2019, 7, 28539–28547. [Google Scholar] [CrossRef]
- Xu, L.; Gou, X.; Li, Z.; Li, J. A novel chaotic image encryption algorithm using block scrambling and dynamic index based diffusion. Opt. Lasers Eng. 2017, 91, 41–52. [Google Scholar] [CrossRef]
- Gayathri, J.; Subashini, S. A spatiotemporal chaotic image encryption scheme based on self adaptive model and dynamic keystream fetching technique. Multimed. Tools Appl. 2018, 77, 24751–24787. [Google Scholar] [CrossRef]
- Wu, X.; Wang, K.; Wang, X.; Kan, H.; Kurths, J. Color image DNA encryption using NCA map-based CML and one-time keys. Signal Process. 2018, 148, 272–287. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, G.; Sun, K. Cryptanalysis and Improvement on an Image Encryption Algorithm Design Using a Novel Chaos Based S-Box. Symmetry 2018, 10, 399. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Wang, G.; Zhu, C. A Secure and Fast Image Encryption Scheme Based on Double Chaotic S-Boxes. Entropy 2019, 21, 790. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhao, B.; Huang, L. Quantum image encryption scheme using Arnold transform and S-box scrambling. Entropy 2019, 21, 343. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Guo, L.; Wei, X. A novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik 2013, 124, 3596–3600. [Google Scholar] [CrossRef]
- Chai, X.; Chen, Y.; Broyde, L. A novel chaos-based image encryption algorithm using DNA sequence operations. Opt. Lasers Eng. 2017, 88, 197–213. [Google Scholar] [CrossRef]
- Chai, X.; Fu, X.; Gan, Z.; Lu, Y.; Chen, Y. A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process. 2019, 155, 44–62. [Google Scholar] [CrossRef]
- Khan, J.S.; Ahmad, J.; Abbasi, S.F.; Kayhan, S.K. DNA Sequence Based Medical Image Encryption Scheme. In Proceedings of the 10th Computer Science and Electronic Engineering (CEEC), Colchester, UK, 19–21 September 2018; pp. 24–29. [Google Scholar]
- Zhan, K.; Wei, D.; Shi, J.; Yu, J. Cross-utilizing hyperchaotic and DNA sequences for image encryption. J. Electron. Imaging 2017, 26, 013021. [Google Scholar] [CrossRef]
- Zhu, C.; Hu, Y.; Sun, K. New image encryption algorithm based on hyperchaotic system and ciphertext diffusion in crisscross pattern. J. Electron. Inf. Tech. 2012, 34, 1735–1743. [Google Scholar] [CrossRef]
- Sun, S. A Novel Hyperchaotic Image Encryption Scheme Based on DNA Encoding, Pixel-Level Scrambling and Bit-Level Scrambling. IEEE Photonics J. 2018, 10, 1–14. [Google Scholar] [CrossRef]
- Zhou, N.; Chen, W.; Yan, X.; Wang, Y. Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system. Quantum Inf. Process. 2018, 17, 137. [Google Scholar] [CrossRef]
- Ahmed, F.; Siyal, M.; Abbas, V. A perceptually scalable and jpeg compression tolerant image encryption scheme. In Proceedings of the 4th Pacific-RIM Symposium on Image and Video Technology (PSIVT), Singapore, 14–17 November 2010; pp. 232–238. [Google Scholar]
- Ahmad, J.; Khan, M.A.; Ahmed, F.; Khan, J.S. A novel image encryption scheme based on orthogonal matrix, skew tent map, and XOR operation. Neural Comput. Appl. 2018, 30, 3847–3857. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y. Design of image cipher using block-based scrambling and image filtering. Inf. Sci. 2017, 396, 97–113. [Google Scholar] [CrossRef]
- Rossler, O.E. An equation for hyperchaos. Phys. Lett. A. 1979, 71, 155–157. [Google Scholar] [CrossRef]
- Gu, Q.; Gao, T. Analysis of transition between chaos and hyper-chaos of an improved hyper-chaotic system. Chin. Phys. B 2009, 18, 84–90. [Google Scholar]
- Chen, G.; Ueta, T. Yet another chaotic attractor. Int. J. Bifurc. Chaos 1999, 9, 1465–1466. [Google Scholar] [CrossRef]
- Adleman, L.M. Molecular computation of solutions to combinatorial problems. Nature 1994, 369, 40. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Hu, Z.; Jia, Y.; Wu, J.; Zhou, Y. Forecasting Crude Oil Prices Using Ensemble Empirical Mode Decomposition and Sparse Bayesian Learning. Energies 2018, 11, 1882. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Zheng, J.; Xu, J.; Deng, W. Fault diagnosis method based on principal component analysis and broad learning system. IEEE ACCESS 2019, 7, 99263–99272. [Google Scholar] [CrossRef]
- Li, T.; Zhou, Y.; Li, X.; Wu, J.; He, T. Forecasting Daily Crude Oil Prices Using Improved CEEMDAN and Ridge Regression-Based Predictors. Energies 2019, 12, 3063. [Google Scholar]
- Alvarez, G.; Li, S. Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 2006, 16, 2129–2151. [Google Scholar] [CrossRef] [Green Version]
- Yue, W.; Joseph, P.N.; Sos, A. NPCR and UACI Randomness Tests for Image Encryption. J. Sel. Areas Telecommun. 2011, 1, 31–38. [Google Scholar]
- Chai, X.; Gan, Z.; Lu, Y.; Chen, Y.; Han, D. A novel image encryption algorithm based on the chaotic system and DNA computing. Int. J. Mod. Phys. C 2017, 28, 1750069. [Google Scholar] [CrossRef]
RULE | Rule 1 | Rule 2 | Rule 3 | Rule 4 | Rule 5 | Rule 6 | Rule 7 | Rule 8 |
---|---|---|---|---|---|---|---|---|
00 | A | T | T | A | C | G | C | G |
01 | C | G | C | G | A | A | T | T |
10 | G | C | G | C | T | T | A | A |
11 | T | A | A | T | G | C | G | C |
⊕ | A | C | G | T | ⊖ | A | C | G | T | ⊗ | A | C | G | T | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | A | C | G | T | A | A | T | G | C | A | A | C | G | T | ||
C | C | G | T | A | C | C | A | T | G | C | C | A | T | G | ||
G | G | T | A | C | G | G | C | A | T | G | G | T | A | C | ||
T | T | A | C | G | T | T | G | C | A | T | T | G | C | A |
Image | Size () | Image | Size () | Image | Size () |
---|---|---|---|---|---|
Lena256 | Airplane256 | Aerial512 | |||
Finger512 | Clown512 | Martha512 | |||
Crowd512 | Reagan512 | Trucks512 | |||
Woman512 | Lena512 | Lena1024 | |||
Male1024 | Male2048 | Airport2048 |
Image | Input | Cipher Images | ||||
---|---|---|---|---|---|---|
PFDD | DFDLC [10] | HCDNA [33] | CDCP [34] | IC-BSIF [39] | ||
Lena256 | 7.5954 | 7.9973 | 7.9971 | 7.9965 | 7.9966 | 7.9972 |
Airplane256 | 6.4523 | 7.9972 | 7.9969 | 7.9962 | 7.9973 | 7.9973 |
Aerial512 | 6.9940 | 7.9993 | 7.9993 | 7.9985 | 7.9993 | 7.9993 |
Finger512 | 6.7279 | 7.9993 | 7.9993 | 7.9990 | 7.9992 | 7.9992 |
Clown512 | 5.3684 | 7.9992 | 7.9993 | 7.9892 | 7.9992 | 7.9994 |
Martha512 | 7.5222 | 7.9993 | 7.9993 | 7.9991 | 7.9993 | 7.9993 |
Crowd512 | 7.4842 | 7.9992 | 7.9993 | 7.9946 | 7.9994 | 7.9993 |
Reagan512 | 7.1923 | 7.9993 | 7.9993 | 7.9993 | 7.9993 | 7.9992 |
Trucks512 | 6.5632 | 7.9994 | 7.9994 | 7.9994 | 7.9993 | 7.9993 |
Woman512 | 6.9542 | 7.9992 | 7.9992 | 7.9993 | 7.9992 | 7.9993 |
Lena512 | 7.4455 | 7.9993 | 7.9993 | 7.9994 | 7.9993 | 7.9993 |
Lena1024 | 7.4439 | 7.9998 | 7.9998 | 7.9991 | 7.9998 | 7.9998 |
Male1024 | 7.5237 | 7.9998 | 7.9998 | 7.9940 | 7.9998 | 7.9998 |
Male2048 | 7.5369 | 8.0000 | 8.0000 | 7.9935 | 8.0000 | 8.0000 |
Airport2048 | 6.8106 | 8.0000 | 8.0000 | 7.9994 | 8.0000 | 8.0000 |
Image | Input | Cipher Images | |||||
---|---|---|---|---|---|---|---|
PFDD | DFDLC [10] | HCDNA [33] | CDCP [34] | IC-BSIF [39] | |||
0.9144 | −0.0014 | 0.0045 | −0.0042 | 0.0041 | −0.0004 | ||
Lena256 | 0.9545 | 0.0028 | 0.0012 | −0.0011 | 0.0004 | −0.0020 | |
0.9098 | 0.0066 | 0.0001 | 0.0029 | −0.0000 | 0.0028 | ||
0.9562 | 0.0080 | −0.0038 | −0.0040 | −0.0027 | 0.0009 | ||
Airplane256 | 0.8742 | −0.0104 | 0.0004 | −0.0007 | 0.0001 | −0.0036 | |
0.8995 | −0.0000 | −0.0019 | 0.0003 | 0.0022 | −0.0022 | ||
0.8993 | −0.0024 | −0.0009 | 0.0007 | 0.0009 | −0.0014 | ||
Aerial512 | 0.8549 | −0.0011 | 0.0021 | −0.0011 | −0.0009 | 0.0014 | |
0.8003 | 0.0003 | 0.0005 | 0.0021 | 0.0010 | −0.0011 | ||
0.9343 | 0.0002 | −0.0001 | 0.0007 | −0.0023 | −0.0026 | ||
Finger512 | 0.9168 | 0.0013 | 0.0002 | 0.0029 | −0.0032 | −0.0030 | |
0.8664 | −0.0007 | 0.0017 | −0.0022 | −0.0010 | 0.0011 | ||
0.9763 | −0.0018 | −0.0026 | 0.0001 | 0.0019 | 0.0022 | ||
Clown512 | 0.9888 | 0.0009 | −0.0004 | 0.0020 | −0.0033 | 0.0012 | |
0.9699 | −0.0002 | 0.0002 | 0.0010 | −0.0008 | −0.0015 | ||
0.9864 | 0.0014 | 0.0020 | 0.0002 | −0.0009 | −0.0001 | ||
Martha512 | 0.9899 | −0.0017 | 0.0008 | −0.0003 | 0.0003 | −0.0013 | |
0.9815 | −0.0015 | −0.0004 | 0.0014 | −0.0003 | −0.0030 | ||
0.9059 | 0.0021 | −0.0003 | −0.0004 | 0.0019 | −0.0013 | ||
Crowd512 | 0.9047 | 0.0001 | 0.0014 | −0.0029 | −0.0005 | 0.0003 | |
0.8525 | −0.0018 | −0.0022 | 0.0017 | −0.0007 | 0.0012 | ||
0.9668 | −0.0031 | 0.0003 | −0.0017 | 0.0003 | 0.0015 | ||
Reagan512 | 0.9757 | 0.0010 | 0.0003 | −0.0007 | 0.0035 | −0.0002 | |
0.9573 | 0.0005 | 0.0008 | 0.0013 | 0.0022 | 0.0023 | ||
0.9408 | −0.0016 | −0.0034 | −0.0013 | 0.0014 | 0.0028 | ||
Trucks512 | 0.9110 | 0.0017 | −0.0021 | −0.0003 | −0.0023 | −0.0019 | |
0.8906 | −0.0008 | 0.0000 | 0.0001 | −0.0029 | −0.0007 | ||
0.9250 | 0.0028 | 0.0002 | −0.0032 | 0.0008 | −0.0004 | ||
Woman512 | 0.9570 | −0.0013 | −0.0015 | 0.0008 | −0.0020 | 0.0003 | |
0.9217 | 0.0011 | 0.0014 | 0.0030 | 0.0003 | −0.0003 | ||
0.9691 | 0.0013 | 0.0023 | −0.0015 | −0.0004 | 0.0023 | ||
Lena512 | 0.9841 | 0.0021 | 0.0009 | −0.0020 | 0.0028 | 0.0009 | |
0.9639 | 0.0013 | 0.0008 | 0.0024 | 0.0016 | 0.0008 | ||
0.9918 | 0.0007 | 0.0008 | −0.0012 | 0.0015 | 0.0008 | ||
Lena1024 | 0.9962 | −0.0007 | −0.0003 | −0.0020 | −0.0012 | −0.0003 | |
0.9902 | −0.0004 | 0.0001 | 0.0001 | −0.0005 | 0.0001 | ||
0.9769 | −0.0012 | −0.0001 | −0.0003 | −0.0005 | −0.0001 | ||
Male1024 | 0.9804 | 0.0008 | 0.0014 | 0.0011 | 0.0009 | 0.0014 | |
0.9669 | 0.0009 | 0.0008 | −0.0002 | 0.0006 | 0.0008 | ||
0.9942 | 0.0014 | 0.0001 | 0.0001 | 0.0002 | 0.0001 | ||
Male2048 | 0.9950 | −0.0002 | 0.0002 | −0.0004 | −0.0002 | 0.0002 | |
0.9905 | 0.0002 | 0.0004 | −0.0003 | 0.0002 | 0.0004 | ||
0.9781 | 0.0009 | 0.0010 | −0.0003 | 0.0001 | 0.0010 | ||
Airport2048 | 0.9764 | −0.0004 | 0.0001 | −0.0007 | −0.0003 | 0.0001 | |
0.9581 | −0.0002 | 0.0002 | −0.0006 | −0.0002 | 0.0002 |
Image | PFDD | DFDLC [10] | HCDNA [33] | CDCP [34] | IC-BSIF [39] |
---|---|---|---|---|---|
Lena256 | 33.4440 | 33.4741 | 18.7430 | 33.4862 | 33.4200 |
Airplane256 | 33.4620 | 33.4367 | 20.3208 | 33.5691 | 33.4330 |
Aerial512 | 33.4745 | 33.4471 | 22.1490 | 33.4430 | 33.4575 |
Finger512 | 33.4711 | 33.4095 | 13.0616 | 33.4836 | 33.4601 |
Clown512 | 33.4742 | 33.4437 | 26.4164 | 33.4142 | 33.4787 |
Martha512 | 33.4810 | 33.4748 | 22.0456 | 33.4501 | 33.4810 |
Crowd512 | 33.4718 | 33.4624 | 21.2259 | 33.4466 | 33.4612 |
Reagan512 | 33.4267 | 33.4657 | 13.9140 | 33.4909 | 33.5007 |
Trucks512 | 33.4885 | 33.4700 | 25.9466 | 33.4382 | 33.4385 |
Woman512 | 33.5120 | 33.4505 | 21.6499 | 33.4779 | 33.4719 |
Lena512 | 33.4840 | 33.4363 | 26.4423 | 33.4275 | 33.4568 |
Lena1024 | 33.4776 | 33.4674 | 31.1754 | 33.4320 | 33.4630 |
Male1024 | 33.4459 | 33.4536 | 30.3316 | 33.4876 | 33.4475 |
Male2048 | 33.4587 | 33.4641 | 23.7265 | 33.4629 | 33.4683 |
Airport2048 | 33.4556 | 33.4550 | 29.0287 | 33.4661 | 33.4590 |
Image | PFDD | DFDLC [10] | HCDNA [33] | CDCP [34] | IC-BSIF [39] |
---|---|---|---|---|---|
Lena256 | 99.6124 | 99.6202 | 46.0794 | 100.0000 | 99.6045 |
Airplane256 | 99.6260 | 99.6155 | 47.1913 | 100.0000 | 99.5866 |
Aerial512 | 99.6101 | 99.6130 | 55.1017 | 99.5516 | 99.6142 |
Finger512 | 99.5956 | 99.6077 | 30.8046 | 99.6445 | 99.6118 |
Clown512 | 99.6141 | 99.6107 | 60.8291 | 99.4683 | 99.6124 |
Martha512 | 99.6112 | 99.6056 | 54.7043 | 99.6180 | 99.6130 |
Crowd512 | 99.6112 | 99.6066 | 59.4704 | 99.5816 | 99.6156 |
Reagan512 | 99.6111 | 99.6054 | 35.9236 | 99.5967 | 99.6089 |
Trucks512 | 99.6112 | 99.6121 | 67.8079 | 99.6015 | 99.6055 |
Woman512 | 99.6120 | 99.6133 | 58.5091 | 99.5684 | 99.6168 |
Lena512 | 99.6062 | 99.6140 | 94.1631 | 99.2096 | 99.6173 |
Lena1024 | 99.6075 | 99.6100 | 78.9105 | 99.2248 | 99.6100 |
Male1024 | 99.6113 | 99.6107 | 78.9105 | 99.2470 | 99.6084 |
Male2048 | 99.6104 | 99.6092 | 87.1085 | 100.0000 | 99.6099 |
Airport2048 | 99.6077 | 99.6089 | 87.1085 | 100.0000 | 99.6088 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Shi, J.; Li, T. A Novel Image Encryption Approach Based on a Hyperchaotic System, Pixel-Level Filtering with Variable Kernels, and DNA-Level Diffusion. Entropy 2020, 22, 5. https://doi.org/10.3390/e22010005
Wu J, Shi J, Li T. A Novel Image Encryption Approach Based on a Hyperchaotic System, Pixel-Level Filtering with Variable Kernels, and DNA-Level Diffusion. Entropy. 2020; 22(1):5. https://doi.org/10.3390/e22010005
Chicago/Turabian StyleWu, Jiang, Jiayi Shi, and Taiyong Li. 2020. "A Novel Image Encryption Approach Based on a Hyperchaotic System, Pixel-Level Filtering with Variable Kernels, and DNA-Level Diffusion" Entropy 22, no. 1: 5. https://doi.org/10.3390/e22010005
APA StyleWu, J., Shi, J., & Li, T. (2020). A Novel Image Encryption Approach Based on a Hyperchaotic System, Pixel-Level Filtering with Variable Kernels, and DNA-Level Diffusion. Entropy, 22(1), 5. https://doi.org/10.3390/e22010005