Improving Parameter Estimation of Entropic Uncertainty Relation in Continuous-Variable Quantum Key Distribution
<p>Prepare-and-measure (PM) scheme of continuous-variable (CV)-quantum key distribution (QKD) using squeezed states. Source: squeezed-state source with squeezed variance <math display="inline"><semantics> <msub> <mi>V</mi> <mi>S</mi> </msub> </semantics></math>; Mod: modulators containing amplitude and phase quadrature modulators with total modulation variance <math display="inline"><semantics> <msub> <mi>V</mi> <mi>M</mi> </msub> </semantics></math>; Hom: homodyne detection; <math display="inline"><semantics> <msub> <mi>x</mi> <mi>M</mi> </msub> </semantics></math>: Gaussian modulation data on Alice’s side; <math display="inline"><semantics> <msub> <mi>x</mi> <mi>B</mi> </msub> </semantics></math>: measurement results on Bob’s side; Quantum channel: channel for the transmission of quantum states, with the transmittance <math display="inline"><semantics> <mi>τ</mi> </semantics></math> and the excess noise <math display="inline"><semantics> <mi>ε</mi> </semantics></math>; Classical channel: channel for the transmission of classical data during the post-processing procedure.</p> "> Figure 2
<p>Comparison of performances between the previous key rates and the modified results under different block lengths, namely, <math display="inline"><semantics> <msup> <mn>10</mn> <mn>7</mn> </msup> </semantics></math>, <math display="inline"><semantics> <msup> <mn>10</mn> <mn>8</mn> </msup> </semantics></math>, and <math display="inline"><semantics> <msup> <mn>10</mn> <mn>9</mn> </msup> </semantics></math>. (<b>a</b>) shows the direct reconciliation (DR) cases, and (<b>b</b>) shows the reverse reconciliation (RR) cases. The solid lines are the performances under the ideal covariance matrix (CM) estimation, and the dashed lines are the performances under practical CM estimation considering finite-size. The reconciliation efficiency <math display="inline"><semantics> <mi>β</mi> </semantics></math> is under a practical value of <math display="inline"><semantics> <mrow> <mn>95</mn> <mo>%</mo> </mrow> </semantics></math>, and the excess noise is chosen as <math display="inline"><semantics> <mrow> <mi>ε</mi> <mrow> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mo>.</mo> <mn>01</mn> </mrow> </mrow> </semantics></math>. We set the security parameters <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi>ε</mi> <mi>s</mi> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>9</mn> </mrow> </msup> </mrow> </semantics></math> and the detection range to <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>61</mn> <mo>.</mo> <mn>6</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Comparison of performances between the previous key rates and the modified results under different transmission distances. (<b>a</b>) shows the direct reconciliation cases, and (<b>b</b>) shows the reverse reconciliation cases. The solid lines are the performances under ideal CM estimation, and the dashed lines are the performances under practical CM estimation considering finite-size. The parameters are chosen as in <a href="#entropy-21-00652-f002" class="html-fig">Figure 2</a>.</p> "> Figure 4
<p>Comparison of the performances between the standard estimation method and the modified double-data modulation method under the reverse reconciliation case. (<b>a</b>) shows the performances of two scenarios under different block sizes, while (<b>b</b>) shows the protocol’s performances under different transmission distances. The dashed lines are the performances using the standard estimation method, and the solid lines are the performances using double-data modulation method.</p> ">
Abstract
:1. Introduction
2. Composable Security and Description of the Protocol
- State preparation: Alice holds the squeezed states with squeezed variance before the protocol begins, where . In every run of the protocol, Alice uses Gaussian random numbers to encode the displacement of quadratures by using modulators (generally containing amplitude and phase modulators), and the total modulation variance is denoted by .
- State transmission: Alice sends the modulated state in the quantum channel, which is treated as a totally untrusted channel and controlled by Eve.
- State measurement: Bob receives the quantum state and randomly measures x or p quadrature by an ideal homodyne detector. Resulting from the fact that the practical measurement phase is always discrete, the ideal measurement outcomes should be discretized by the analogue-to-digital converter (ADC). The final discretized results are denoted by .
- Parameter estimation: Alice and Bob repeat the above steps many times until they have enough raw data (e.g., N). Then, Alice or Bob reveals some of the raw data (with length m) through the classical channel to estimate the key parameters of the channel, especially the data distance between Alice’s and Bob’s data, the transmittance , and the excess noise . See Section 3 for a detailed explanation of the parameter estimation step.
- Error correction: According to the estimation parameters and , the communication parts estimate the leakage information during the error correction phase and choose an appropriate classical error reconciliation algorithm, e.g., low-density-parity-check (LDPC) code, to correct Alice’s error (in reverse reconciliation cases) or Bob’s error (in direct reconciliation cases).
- Privacy amplification: Alice and Bob randomly choose a universal hash function [45] and apply it to their respective keys to get the final private keys and with length ℓ, which are only known to themselves.
3. Channel Parameter Estimation with Finite-Size
3.1. Estimation of Smooth Min-Entropy
3.2. Ideal Estimation of Leakage Information with Infinite-Size
3.3. Practical Estimation of Leakage Information with Finite-Size
4. Double-Data Modulation Method and the Modified Estimation Process
5. Numerical Simulation and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CV | Continuous-variable |
DV | Discrete-variable |
QKD | Quantum key distribution |
EUR | Entropic uncertainty relation |
CM | Covariance matrix |
DR | Direct reconciliation |
RR | Reverse reconciliation |
References
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef] [Green Version]
- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dušek, M.; Lütkenhaus, N.; Peev, M. The security of practical quantum key distribution. Rev. Mod. Phys. 2009, 81, 1301–1350. [Google Scholar] [CrossRef] [Green Version]
- Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Rev. Mod. Phys. 2012, 84, 621–669. [Google Scholar] [CrossRef]
- Diamanti, E.; Leverrier, A. Distributing secret keys with quantum continuous variables: Principle, security and implementations. Entropy 2015, 17, 6072–6092. [Google Scholar] [CrossRef]
- Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in quantum cryptography. arXiv 2019, arXiv:1906.01645. [Google Scholar]
- Ralph, T.C. Continuous variable quantum cryptography. Phys. Rev. A 1999, 61, 010303(R). [Google Scholar] [CrossRef]
- Hillery, M. Quantum cryptography with squeezed states. Phys. Rev. A 2000, 61, 022309. [Google Scholar] [CrossRef] [Green Version]
- Cerf, N.J.; Lévy, M.; Van Assche, G. Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A 2001, 63, 052311. [Google Scholar] [CrossRef] [Green Version]
- Usenko, V.C.; Filip, R. Squeezed-state quantum key distribution upon imperfect reconciliation. New J. Phys. 2011, 13, 113007. [Google Scholar] [CrossRef]
- Grosshans, F.; Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 2002, 88, 057902. [Google Scholar] [CrossRef]
- Grosshans, F.; van Assche, G.; Wenger, J.; Brouri, R.; Cerf, N.J.; Grangier, P. Quantum key distribution using gaussian-modulated coherent states. Nature 2003, 421, 238–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weedbrook, C.; Lance, A.M.; Bowen, W.P.; Symul, T.; Ralph, T.C.; Lam, P.K. Quantum cryptography without switching. Phys. Rev. Lett. 2004, 93, 170504. [Google Scholar] [CrossRef] [PubMed]
- Pirandola, S.; Mancini, S.; Lloyd, S.; Braunstein, S.L. Continuous-variable quantum cryptography using two-way quantum communication. Nat. Phys. 2008, 4, 726–730. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Peng, X.; Shen, Y.; Guo, H. Security of a new two-way continuous-variable quantum key distribution protocol. Int. J. Quantum Inf. 2012, 10, 1250059. [Google Scholar] [CrossRef]
- Zhang, Y.-C.; Li, Z.; Weedbrook, C.; Yu, S.; Gu, W.; Sun, M.; Peng, X.; Guo, H. Improvement of two-way continuous-variable quantum key distribution using optical amplifiers. J. Phys. B 2014, 47, 035501. [Google Scholar] [CrossRef] [Green Version]
- Ottaviani, C.; Mancini, S.; Pirandola, S. Two-way Gaussian quantum cryptography against coherent attacks in direct reconciliation. Phys. Rev. A 2015, 92, 062323. [Google Scholar] [CrossRef]
- Ottaviani, C.; Pirandola, S. General immunity and superadditivity of two-way Gaussian quantum cryptography. Sci. Rep. 2016, 6, 22225. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Z.; Zhao, Y.; Yu, S.; Guo, H. Numerical simulation of the optimal two-mode attacks for two-way continuous-variable quantum cryptography in reverse reconciliation. J. Phys. B At. Mol. Opt. Phys. 2017, 50, 035501. [Google Scholar] [CrossRef] [Green Version]
- Leverrier, A.; Grangier, P. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 2009, 102, 180504. [Google Scholar] [CrossRef]
- Leverrier, A.; Grangier, P. Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation. Phys. Rev. A 2011, 83, 042312. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Guo, H. User-defined quantum key distribution. arXiv 2018, arXiv:1805.04249. [Google Scholar]
- Li, Z.; Zhang, Y.-C.; Xu, F.; Peng, X.; Guo, H. Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 2014, 89, 052301. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-C.; Li, Z.; Yu, S.; Gu, W.; Peng, X.; Guo, H. Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 2014, 90, 052325. [Google Scholar] [CrossRef] [Green Version]
- Pirandola, S.; Ottaviani, C.; Spedalieri, G.; Weedbrook, C.; Braunstein, S.L.; Lloyd, S.; Gehring, T.; Jacobsen, C.S.; Andersen, U.L. High-rate measurement-device-independent quantum cryptography. Nat. Photon. 2015, 9, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, Y.; Zhao, Y.; Wang, X.; Yu, S.; Guo, H. Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 2017, 96, 042334. [Google Scholar] [CrossRef] [Green Version]
- Papanastasiou, P.; Ottaviani, C.; Pirandola, S. Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables. Phys. Rev. A 2017, 96, 042332. [Google Scholar] [CrossRef] [Green Version]
- Lupo, C.; Ottaviani, C.; Papanastasiou, P.; Pirandola, S. Continuous-variable measurement-device- independent quantum key distribution: Composable security against coherent attacks. Phys. Rev. A 2018, 97, 052327. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Wang, G.; Li, Z.; Guo, H. Composable security analysis of continuous-variable measurement-device-independent quantum key distribution with squeezed states for coherent attacks. Phys. Rev. A 2018, 98, 012314. [Google Scholar] [CrossRef] [Green Version]
- Jouguet, P.; Kunz-Jacques, S.; Debuisschert, T.; Fossier, S.; Diamanti, E.; Alléaume, R.; Tualle-Brouri, R.; Grangier, P.; Leverrier, A.; Pache, P.; et al. Field test of classical symmetric encryption with continuous variables quantum key distribution. Opt. Express 2012, 20, 14030–14041. [Google Scholar] [CrossRef] [Green Version]
- Jouguet, P.; Kunz-Jacques, S.; Leverrier, A.; Grangier, P.; Diamanti, E. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon. 2013, 7, 378–381. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Chen, Z.; Weedbrook, C.; Zhao, Y.; Wang, X.; Huang, Y.; Xu, C.; Zhang, X.; Wang, Z.; et al. Continuous-variable QKD over 50km commercial fiber. Quantum Sci. Technol. 2019, 4, 035006. [Google Scholar] [CrossRef]
- Leverrier, A. Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 2015, 114, 070501. [Google Scholar] [CrossRef] [PubMed]
- Leverrier, A. Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett. 2017, 118, 200501. [Google Scholar] [CrossRef] [PubMed]
- Christandl, M.; König, R.; Renner, R. Postselection technique for quantum channels with applications to quantum cryptography. Phys. Rev. Lett. 2009, 102, 020504. [Google Scholar] [CrossRef] [PubMed]
- Leverrier, A.; García-Patrón, R.; Renner, R.; Cerf, N.J. Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 2013, 110, 030502. [Google Scholar] [CrossRef] [PubMed]
- Furrer, F.; Franz, T.; Berta, M.; Leverrier, A.; Scholz, V.B.; Tomamichel, M.; Werner, R.F. Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 2012, 109, 100502. [Google Scholar] [CrossRef]
- Furrer, F. Reverse-reconciliation continuous-variable quantum key distribution based on the uncertainty principle. Phys. Rev. A 2014, 90, 042325. [Google Scholar] [CrossRef] [Green Version]
- Gehring, T.; Händchen, V.; Duhme, J.; Furrer, F.; Franz, T.; Pacher, C.; Werner, R.F.; Schnabel, R. Implementation of continuous-variable quantum key distribution with composable and one-sided-device- independent security against coherent attacks. Nat. Commun. 2015, 6, 8795. [Google Scholar] [CrossRef]
- Marangon, D.G.; Vallone, G.; Villoresi, P. Source-device-independent ultrafast quantum random number generation. Phy. Rev. Lett. 2017, 118, 060503. [Google Scholar] [CrossRef]
- Xu, B.; Chen, Z.; Li, Z.; Yang, J.; Su, Q.; Huang, W.; Zhang, Y.; Guo, H. High speed continuous variable source-independent quantum random number generation. Quantum Sci. Technol. 2019, 4, 025013. [Google Scholar] [CrossRef] [Green Version]
- Coles, P.J.; Berta, M.; Tomamichel, M.; Wehner, S. Entropic uncertainty relations and their applications. Rev. Mod. Phys. 2017, 89, 015002. [Google Scholar] [CrossRef] [Green Version]
- Ruppert, L.; Usenko, V.C.; Filip, R. Long-distance continuous-variable quantum key distribution with efficient channel estimation. Phys. Rev. A 2014, 90, 062310. [Google Scholar] [CrossRef]
- Renner, R. Security of Quantum Key Distribution. Ph.D. Thesis, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland, 2006. [Google Scholar]
- Müller-Quade, J.; Renner, R. Composability in quantum cryptography. New J. Phys. 2009, 11, 085006. [Google Scholar] [CrossRef] [Green Version]
- Carter, J.L.; Wegman, M.N. Universal classes of hash functions. J. Comput. Syst. Sci. 1979, 18, 143. [Google Scholar] [CrossRef]
- Ghorai, S.; Diamanti, E.; Leverrier, A. Composable security of two-way continuous-variable quantum key distribution without active symmetrization. Phys. Rev. A 2019, 99, 012311. [Google Scholar] [CrossRef] [Green Version]
- Kiukas, J.; Werner, R.F. Maximal violation of Bell inequalities by position measurements. J. Math. Phys. 2010, 51, 072105. [Google Scholar] [CrossRef] [Green Version]
- Serfling, R.J. Probability inequalities for the sum in sampling without replacement. Ann. Stat. 1974, 2, 39. [Google Scholar] [CrossRef]
- Grosshans, F.; Cerf, N.J.; Wenger, J.; Tualle-Brouri, R.; Grangier, P. Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. Quantum Inf. Comput. 2003, 3, 535. [Google Scholar]
- Schönbeck, A.; Thies, F.; Schnabel, R. 13 dB squeezed vacuum states at 1550 nm from 12 mW external pump power at 775 nm. Opt. Lett. 2018, 43, 110. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Li, Z.; Xu, B.; Yu, S.; Guo, H. Efficient rate-adaptive reconciliation for CV-QKD protocol. Quantum Inf. Comput. 2017, 17, 1123. [Google Scholar]
- Wang, X.; Zhang, Y.; Yu, S.; Guo, H. High speed error correction for continuous-variable quantum key distribution with multi-edge type LDPC code. Sci. Rep. 2018, 8, 10543. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Zhang, Y.; Wang, X.; Yu, S.; Guo, H. Improving Parameter Estimation of Entropic Uncertainty Relation in Continuous-Variable Quantum Key Distribution. Entropy 2019, 21, 652. https://doi.org/10.3390/e21070652
Chen Z, Zhang Y, Wang X, Yu S, Guo H. Improving Parameter Estimation of Entropic Uncertainty Relation in Continuous-Variable Quantum Key Distribution. Entropy. 2019; 21(7):652. https://doi.org/10.3390/e21070652
Chicago/Turabian StyleChen, Ziyang, Yichen Zhang, Xiangyu Wang, Song Yu, and Hong Guo. 2019. "Improving Parameter Estimation of Entropic Uncertainty Relation in Continuous-Variable Quantum Key Distribution" Entropy 21, no. 7: 652. https://doi.org/10.3390/e21070652